Refactoring
Benefits and Disadvantages of an Amazing Technique

Michael Hunger

25th October 2000

Contents

1 Introduction 6
1.1 Introduction. 6
1.2 What is Refactoring? L o oo ool 6

1.2.1 Testing using Unit Tests 7
1.2.2 Refactoring Consists of Small Steps 9
1.3 The Benefits of Refactoring 0oL, 11
1.3.1 Refactoring helps Understanding Code 11
1.3.2 Improving the Design 12
133 CodeReviews 13
1.3.4 Introducing Refactoring to the Management 13
1.4 Insufficiencies of Refactoring 14
1.4.1 When it Does Not Pay Off to Refactor 14
1.4.2 The Costs of Refactoring 15
1.4.3 Risks Involved When Doing Refactoring 15
1.5 Refactoring vs. Design 16
1.5.1 TIterative, Incremental Development 16
1.5.2 Extreme Programming L o0, 18
1.5.3 Refactoring Is Analyzing, 19
1.5.4 Refactoring Adds Flexibility 19
1.6 When its Necessary to Refactor 20
1.7 The Craft of Refactoring 20
1.7.1 Patterns L 21
1.7.2 Extreme Programming, XP 21
1.73 TheHard Work 21
1.7.4 Language Advantages 21
1.7.5 Refactoring vs. Rewriting 22
2 Development 23
2.1 Looking at the History 23
2.1.1 Catalogs of Refactorings 23
2.2 ToolsNeeded e 24
2.2.1 Thinking About Tools 24
2.2.2 History of Tool Development 25
2.3 A Short Look on Some Tools Available 25
2.3.1 Refactoring Browser (Smalltalk) 25
2.3.2 JRefactory (Java) oL 28
2.3.3 IntelliJ Renamer (Java) 30
2.3.4 Xref-Speller for Emacs (Java,C++4+,C) 31

3 Example

3.1
3.2
3.3
3.4

3.5

Refactoring Examples in General
Reasons For Choosing This Example
Anticipated Problems oo
Doing the Refactoring o oL
3.4.1 Testing e
3.4.2 Log-file and Caring about Initialization
3.4.3 Idea of DatabaseFormat
344 More Testing o e
3.4.5 Refactoring Outside The Database Server
3.4.6 First Methods Extracted To DatabaseFormat
3.4.7 Switching off a Switch (Statement)
3.4.8 A Bright Moment
3.4.9 Reaching The Limits
3.4.10 Final Moves e
Benefits and Disadvantages
3.5.1 Benefits
3.5.2 Disadvantages.o

4 Summary

4.1
4.2

Summary e e e e e e e
Future Development

A Refactoring Example

Al
A2
A3
A4
A5

Refactoring Log
Refactoring Switch Statement oo oL
Replace Parameter with Query L.
The Two Subclasses of DatabaseFormat
Comparison of the Code before and after the refactoring

34
34
35
35
36
36
36
37
38
38
39
40
40
41
41
43
43
44

45
45
45

List of Figures

1.1 Tterative Development Cycles 17
1.2 Comparison of Cost Curves of Extreme Programming and Conventional
Development Processo 18
2.1 JRefactory UML Interface, including Metrics and Package Selector 28
2.2 IntelliJ Renamer, Search Results for a Method Search 30
2.3 The Xref-Speller Interface within Emacs 32
3.1 UML-Diagram of Resulting Design 42
A.1 Comparison of the Code before and after the refactoring 62

Intention of this paper

With the Book “Refactoring - Improving The Design Of Existing Code” by MARTIN
FOWLER [Fowler| the topic was raised from the realm of Smalltalk to a broader community
that shares one very important problem.

Everyone knows of and has experienced the decay of existing software. Refactoring
intends to work against this decaying.

This paper discusses the basics of refactoring and its uses for real-world projects. It
reflects the surprisingly long (in terms of computer science) history of refactoring and the
evolution and development of tools which allow the user to apply refactorings in a more
comfortable way. Some of them already automate the application of whole refactorings as
the Refactoring Browser [Refactoring Browser| and others offer considerable possibilities
for evolving. The tools are tested with a small set of classes but due to the fact that most
of the tools offer only a small subset of refactorings the tests were quite incomplete.

The use of refactoring within the development process is considered as well with a
special focus on the methodology which embraces refactoring as one of its basic principles
Extreme Programming [Beck,Xp].

The main references for this paper were the book mentioned above and the web sites
[Wiki] which have specialized in refactoring.

In the third chapter of the paper one of my own projects - the Metaworks Framework
is exemplarily and partially refactored to illustrated the benefits and problems which arise
when refactoring legacy code.

Because refactoring has become an interesting topic within the programmers commu-
nity there is much material to be found on the web, where people report of their own
experiences when doing refactoring. This paper should also be a kind of such a report but
not as intriguing as theirs as I am new to the field of refactoring and have to learn and
experience it much more.

Chapter 1

Introduction to Refactoring

1.1 Introduction

You know bad code when you see it. It tends to have large classes with lots of very
long methods, which actually look more like a piece of code of a traditional procedural
approach, doing much too much. It contains duplicate code everywhere framed by large
switch statements and complex conditionals. All of this is written in a very dense style
with many comments keeping it from really being dense code.

This is an vision which no one wants to encounter. But as reality goes it is very hard
to keep code consistent to the original design of a system when it evolves within or after
the project. Requirements are changed, features are added, programmers change and all
these things tend to happen under a very tense schedule. These factors imply that the
code is not maintained but only extended resulting in hard to read and to understand,
complicated code which has only little to do with the design which once upon a time
represented the system, the code stands for.

If one is asked to add functionality to such a kind of system (most likely one in pro-
duction, if the project went that far) the first reaction should be to refuse. After a second
thought there is the possibility to throw away the current system (which tends to be
scarcely documented as well) and restart from scratch. The third thing one can do about
something like that is taking a break for a time (depending on the size of the project) to
refactor the code to make it understandable and maintainable again. And after that it
should be no problem at all to implement the wanted functionality.

The best way to solve this problem would of course be never to let something like this
happen. If taken care of, the code would never had got the chance to decay and to loose
its structure and design.

That can be done by looking at the code before extending or modifying it. If the code
is in a good shape, it should be no problem at all to add the functionality. But if it will
take a lot of time to understand the code and extending it would require some hacks which
violate the intended design, the code should be refactored first to regain the attributes
needed for easy maintenance. Only after that it can be extended.

1.2 What is Refactoring?

As many people were involved in the publication of refactoring there are also a lot of
definitions around. I've found this one of RALPH JOENSON [Wiki, ReFactor| quite suited.

1.2. WHAT IS REFACTORING? 7

Refactoring is the process of taking an object design and rearranging it in
various ways to make the design more flexible and/or reusable. There are
several reasons you might want to do this, efficiency and maintainability being
probably the most important.

The author of the reference book [Fowler, p.53] for refactoring MARTIN FOWLER also
provides a more general definition in two parts:

Refactoring(noun): a change made to the internal structure of software to make
it easier to understand and cheaper to modify without changing its observable
behavior.

Refactor(verb): to restructure software by applying a series of refactorings
without changing its observable behavior.

The most important aspects of these definitions are that refactoring must not change
the observable behavior of the software system (not observable is for instance the runtime
aspect which may change due to refactoring) and the changing of the structure of the
software towards a better design and more understandable and reusable code.

Refactoring provides a technique for cleaning up code in a more efficient and
controlled manner. [Fowler, p.54]

The consistency of the observable behavior must be guaranteed when doing refactoring.
Either you are able to use an automated tool to perform refactorings. Then you can rely
on the operations the tool performs as the basic refactorings which can composed to larger
ones are proved to be semantics preserving ([Opdyke, Thesis], [?]).

The second best way to be sure the behavior is not changed, is the use of automatic
testing. This is a technique which is also used as a principle of Extreme Programming
[Beck,Xp] (like refactoring as well) which implies that for each aspect of the software which
is not simple enough to contain no bugs (e.g. accessors), there has to be a test. Most likely
these test should be designed that way that they try to break the software, e.g. expose
€rrors.

1.2.1 Testing using Unit Tests

As those test run automatically it is a very convenient way to check if something that
was changed did corrupt the system (at least the test). Then the change done should be
observed very carefully, and if necessary undone and repeated in smaller steps. Although
this is not a way to catch any error hidden inside the software but to find a lot of them.
Automatic testing has the advantage of not requiring user interaction. Those tests can be
run after each change made to the system. Bugs that were produced when implementing
the change can be spotted immediately.

Much of help for automatic testing is the JUnit [Gamma, JUnit] testing framework
that was developed by KENT BECK and ERICH GAMMA in 1997. It is based on white-box,
regression testing strategies which are implemented by the developer of the concerned code
within their own test classes which are called by the JUnit testing environment.

The importance of testing is stressed in the following quote:

The fewer tests you write, the less productive you are and the less stable you
code becomes. The less productive and accurate you are, the more pressure
you feel. ... You would see the value of the immediate feedback you get from
writing and saving and rerunning your own unit tests. [Gamma, JUnit]

8 CHAPTER 1. INTRODUCTION

The following excerpts were taken from an article at JavaWorld [Nygard] where two
Sun developers expose their enthusiasm for unit testing and show possibilities for extending
unit testing to check distributed components such as Enterprise Java Beans.

We can never over test software, but we seldom test it enough. ... Unit testing
is a critical, but often misunderstood, part of the software development process.
Unit testing involves individually testing each small unit of code to ensure
that it works on its own, independent of the other units. In object-oriented
languages, a unit often, but not always, equivocates to a class. If developers
knew for certain that each piece of the application works as it was designed
to do, they would realize that problems with the assembled application must
result from the way the components were put together. Unit testing tells
developers that an application’s pieces are working as designed.

Process of testing:

1. Decide what the component should do.

2. Design the component. This can be done formally or informally, depend-
ing on the complexity of the component.

3. Write unit tests to confirm that behavior. At first, the tests will not
compile, since the code they test is not yet written. Your focus here is on
capturing the intent of the component, not on the implementation.

4. Start coding the component to the design. Refactor as needed.
5. When the tests pass, stop coding.

6. Consider other ways the component can break; write tests to confirm and
then fix the code.

7. Each time a defect is reported, write a test to confirm. Then fix the code.

8. Each time you change the code, rerun all tests to make sure you haven’t
broken anything.

Important attributes of unit tests are:

e they cover each small unit of code (e.g. a class)
e they are organized into groups or suites of tests
e they have to execute 100

e it should be run often (e.g. each 10-15 minutes) covering only that amount of changes
done

e they are regressive tests, i.e. the changes since the last test are responsible for
breaking the test

e they raise confidence in the system as a whole, because the components are thor-
oughly tested

e they don’t focus on code coverage but on vulnerable parts which are most likely to
break

e they allow developers to write tests first and code tested by them afterwards

1.2. WHAT IS REFACTORING? 9

e it is like welding requirements in code, thereby gaining clarity in purpose, and pre-
serving them (the requirements) as long as the code lives

e they beware of over-design

e they allow changes without second thoughts, as the tests will point on any failure
made

e they help when maintaining as the tests more clearly display the intended use of the
class than the class itself

Problems of testing distributed components, or those heavily relying on their (compli-
cated) context:

e it would be necessary to build a test stub to test the components directly

e this test stub would almost be as complicated as the real context (e.g. Application
Server, Database)

e therefore the testing environment has to run within the context to test the individual
objects, (e.g. as a servlet on a application server)

WILLIAM WAKE has written some essays regarding unit testing, and in one of them
[Wake, JUnit] statet the following point:

Unit tests can be tedious to write, but they save you time in the future (by
catching bugs after changes). Less obviously, but just as important, is that
they can save you time now: tests focus your design and implementation on
simplicity, they support refactoring, and they validate features as you develop.

MARTIN FOWLER [Fowler, p.91] tells about testing practice:

By writing the test you are asking yourself what needs to be done to add the
function. Writing the test also concentrates on the interface rather than the
implementation (always a good thing). It also means you have a clear point
at which you are done coding - when the test works. ... Whenever you are
tempted to type something into a print statement or a debugger expression,
write it as a test instead.

The authors of JUnit say what kind of test should be written [Gamma, JUnit]:

You can always write more tests. However, you will quickly find that only a
fraction of the tests you can imagine are actually useful. What you want is
to write tests that fail even though you think they should work, or tests that
succeed even though you think they should fail. Another way to think of it
is in cost/benefit terms. You want to write tests that will pay you back with
information.

1.2.2 Refactoring Consists of Small Steps

All of that leads to another principle of refactoring - small steps. When changing a lot of
the system at one time it is most likely that also a lot of bugs were introduced in doing
this. But when and where these bug were created is no longer reproduceable. If a change
is implemented in small steps with tests running after each step the bug would occur in

10 CHAPTER 1. INTRODUCTION

the test after introducing it into the system. Then the step could be examined or after
undoing the step it could be split in even smaller steps which can be applied afterwards.
These steps are taken when refactoring a software system:

e find the place where a refactoring has to be applied. This can be done by having
problems when trying to understand, extend or restructure the system or by looking
for the code smells (see 1.6, p.20) in the actual code.

e if a unit test for the code under consideration exits, run the test to see if it is
completed correctly

e otherwise write all necessary unit tests and get them running

e locate a refactoring that can be sensibly applied either by searching your mind or by
looking at the catalog presented in the book of MARTIN FOWLER [Fowler].

e follow the step by step instructions to implement the refactoring
e run the tests between each step to ensure that the behavior has not changed
o if necessary adapt the test code to changed interfaces

e when the refactoring is successfully used to restructure the code, run the tests again,
integrate and run the complete unit tests and functional tests

e if no problem shows up you are done

The steps taken when applying the refactoring should be:

e small enough to oversee the consequences they have,

e reproduceable to allow others to understand them and perhaps get rid of them,

e generalized the way, that they are more a rule that can be applied to any structure
that has a special appearance,

e written down to allow sharing these steps and to keep a reference, completed with
scope, problems, examples and most useful with step by step instructions how to
apply them.

If such a set of rules is available, the application of these steps is more a craft than
creative programming. That “stupid” work is more likely to be error free than free thinking
about how to reorganize the system structure in order to get a better design. And it offers
another possibility that many programmers dream of. The creation of a tool that supports
refactoring in applying these boring steps by itself.

But stating there is nothing creative in refactoring is wrong. The interesting part lies
in finding the bad structured parts of the system which are in need of refactoring. As
there is no metric for good design, it is a skill which has to be developed by practicing
refactoring. Another important aspect is to decide whether to refactor or not, there are
factors that make it harder or even impossible to refactor a certain piece of code.

A set of rule like the one described above evolved when those people which have been
refactoring for years started to gather their experience and wrote it down. It is like
everything that is contained in the knowledge of experts. If it is written down it can be
shared with a great number of people who can rely on this knowledge and reference it
when they are in need of such information.

1.3. THE BENEFITS OF REFACTORING 11

Although a lot of people encounter deja vu’s when reading such repositories, it is a good
sign that many people have done likewise. But they have done without explicitely thinking
of it as an a refactoring but just intermingled with the normal day to day programming.
That bears the danger of mixing up implementing new functionality and at the same time
modifying the structure of the design. This is very error-prone as it is not clear which
activity comes first and which supports the other one.

It is not easy to constrain oneself when doing a refactoring. Often the temptation is
there to include this or that functionality at the current point of refactoring. But as the
rules say you either refactor or add functionality. KENT BECK references this rule as the
swapping of hats. At one time you can only wear one hat. Either the hat of refactoring or
the one of extending. You have to complete your current task (or to abandon it) to do the
other thing. And it is recommended to do the refactoring first as it contributes to making
the system far easier to extend with new features. Extending a system should only add
new capabilities not change existing code.

The goal of refactoring is to restructure the design of a software system to meet certain
criteria which contribute to an general design and appearance that easily allows it to extend
the functionality of the system.

1.3 The Benefits of Refactoring

Those criteria do not only represent the goals of refactoring but also imply a request to
do refactoring when missing.

KENT BECK [Fowler, p.60] states that refactoring adds to the value of any program
that has at least one of the following shortcomings:

e Programs that are hard to read are hard to modify.
e Programs that have duplicate logic are hard to modify

e Programs that require additional behavior that requires you to change
running code are hard to modify.

e Programs with complex conditional logic are hard to modify.

1.3.1 Refactoring helps Understanding Code

There are also people dealing with with the program code of any system, not only machines.
For them it is most important that they are enabled to understand the system easily.
Therefore any system that is bound rather to be extended by people than machines has
to be maintained that way. Apart from documentation and design papers (which are
often lost during the lifetime of a software) the source code is one of the most important
documentation form that exists for software. And no, not the comments. If the comments
do only state what is done within the code they are useless, because what is done is
already stated through the code. And if the code does not communicate its doing it has
to be refactored to do so (Rename Method, Rename Class, Extract Method, Consolidate
Conditional Ezxpression,...).

The code of software should be written the way that reading it explains what is done
and comments should be used to describe why this is done (the intention). Any well
structured and well named program is in no need of a lot of commenting.

When you feel the need to write a comment, first try to refactor the code so
that any comment becomes superfluous. [Fowler, p.88]

12 CHAPTER 1. INTRODUCTION

Software that is written with the future readers in mind (who can be anyone including
oneself) who have to understand it from scratch has to be constantly updated and cleaned
i.e. refactored up to keep communicating its purpose and intention. Then even without
any other documentation the clear structure and the still visible design collaborating with
proper naming allow an easy understanding of the whole system.

Refactoring is also of certain use when its becomes necessary to understand unknown
code. With its help a piece of code that one thinks to have a particular understanding of,
can be transformed (refactored) to reflect that personal understanding. If this transformed
code is executed without errors when testing it, the personal understanding is validated.

1.3.2 Refactoring as a Tool to Improve the (Non)Existing Design

Most software engineers see programming as a necessary but not so important evil. It is
done in the phase of implementation and most bugs are produced there. Finding these
bugs then or even later is very costly (see 1.2, p.18). Most methodologies try to prevent
producing bugs by paying much attention to analysis an design and define the implemen-
tation mostly as writing down the design to code.

But this is a mere theory. As the customers of most software projects don’t know
exactly what they want, the requirements given at the beginning of the project are only
a first hint in which direction the project should evolve. As the project continues, the
requirements are refined, changed or removed. With an upfront design it is hard to cope
with these changes. The design must be adapted each time the requirements change.
When the project has already gone into the implementation phase, it’s necessary to adapt
the design and then update the code to reflect these changes.

Therefore it’s helpful if the used methodology supports incremental iterative develop-
ment [UML+Patterns, Larman|, which allows it to analyze and design only as much as
needed in the current step of development and then work through the implementation and
test phase to get the scope of the current iteration step working correctly.

As reality goes, it is very difficult to keep design and implementation consistent. The
code that is written by the programmer tends to decay. It slowly departs from the original
design, as short-term goals or wanted changes are implemented without considering the
design of the whole system. The farther the code departs from its origins the harder these
are to be seen in the code and the easier it decays further.

Refactoring helps to take the depreciated code back into a useful and good design, by
applying the necessary refactorings step after step with a lot of testing in between.

Bad code often includes lots of duplicate code, therefore many refactorings deal with
eliminating duplicate code. If a system with duplicated code has to be modified the
modification must be implemented in each place the duplicate code occurs. If some code
is forgotten the way is open to many bugs due to the different execution of the duplicate
code. Therefore any refactoring reducing duplicate code improves the design of the system
making it easier to extend it.

As bugs often hide within the depths of bad code, clearing up the design as well as the
code takes them out to the shining light. By using refactoring to reestablish the structure
of the design, the code gets easier to be read and code reviews are more successful. Because
refactoring relies heavily on testing, it is very useful to catch bugs which were not found
earlier due to little testing.

By considering all these aspects, it can be stated that refactoring not only improves
the quality of the code, but takes it back to the intended or an even better design and
allows others to understand it without difficulty, but it also makes programming more

1.3. THE BENEFITS OF REFACTORING 13

efficient. This is accomplished by not allowing the software to decay, keeping its structure
clear, lowering the effort needed to extend the functionality of the system and exposing
bugs early by testing before and after each refactoring.

Project Management aspects of refactoring (When doing it) Except when refac-
toring a large project that is in urgent need of it, refactoring should not be treated as
separated activity which has to be scheduled for itself. Instead refactoring should be an
integrated part of program development that is done every time it needs to be done - either
to adapt the design to ease adding functionality or to understand some unintelligible code
or to expose a bug wrapped in the software.

The Rule of Three by Don Roberts

The first time you do something you just do it. The second time you do
something similar, you wince at the duplication, but you do the duplicate
thing anyway. The third time you do something similar, you refactor. [Fowler,
p.58]

1.3.3 Code Reviews

Regular code reviews are a very useful tool in development as people tend to overlook
mistakes that they have implemented themselves. Code reviews also help to spread expert
knowledge throughout a development team. The suggestions and ideas which evolve during
review sessions often take the process big steps forward.

Even there refactoring can help a lot. It can be used to make the reviewed code easier to
understand and this broader comprehension leads to even more useful propositions. When
taking these suggestions as a source for an immediate refactoring to be implemented by
the reviewers, code reviews can deliver concrete results.

As this kind of review is a very intensive work, it is suggested that only two people -
the author and one reviewer - do this work together to get the highest efficiency. This kind
of work is even taken farther by KENT BECK as an basic principle of the Extreme Pro-
gramming methodology [Beck,Xp] known as Pair Programming. This principle demands
that anytime any pair of two team members is working together to solve a programming
task. Because Extreme Programming also relies on the principles of Refactoring and Unit
Testing as an integral part of the whole process, it is a very good demonstration of how
these principles are working together to maximize the efficiency of software development.

1.3.4 Introducing Refactoring to the Management

is not that simple because refactoring is seen first as an activity that neither increases the
functionality of the software nor modifies the behavior, but may take a lot of time. The
investment into the future is like all long-term goals difficult to sell to any manager.

But there are certain aspects of refactoring that can impress even project managers.
First of all is quality. Refactoring definitely improves the quality of software by restruc-
turing it to reintroduce a design to the code. It also lowers the efforts needed to add
functionality afterwards.

If the manager is convinced of the positive effects of technical or code reviews refac-
toring can be introduced as technique to immediately implement the suggestions for im-
provement which are the result of the review process.

14 CHAPTER 1. INTRODUCTION

As any programmer wants to create effective software as fast as possible, he should
even use the benefits of refactoring if the manager does not comply. The time invested
will repay itself in the whole development process afterwards.

1.4 Insufficiencies of Refactoring

MARTIN FOWLER [Fowler, p.62] devotes a section of his book to the problems arising when
doing refactoring, which is for most of us a new technique.

When you learn a new technique that greatly improves your productivity, it
is hard so see when it does not apply. Usually you learn it within a specific
context, often just a single project. It is hard to see what causes the technique
to be less effective, even harmful.

When working with relational databases refactoring that move the data to another
place are very costly to implement as the database schemas have to be modified as well.
This can be partially avoided by separating the database and the application by an indi-
rection layer, which can be modified to reflect the changes without touching the database.
This layer can be introduced as you go.

If object databases help with the migration of object versions it is only an question of
the additional time needed. Otherwise the migration has to be done manually.

Many refactorings deal with changing names and places of methods thereby changing
the interface of the concerned class. As long as this interface is only used within your own
system you have to find and change all users of the interface, there the collective ownership
of code [Beck,Xp] is very helpful.

If the interface is already used by classes outside your scope it has evolved beyond an
public interface to become a published interface [Fowler, p.64]. This introduces the need
of keeping the old interface alive while already publishing the refactored new interface.
This might be accomplished by delegation from the deprecated methods (which should be
marked as such if the system allows it, an example for this is the Java Development Kit
[JDK]) to the new ones.

Therefore it should be avoided to publish interfaces prematurely. Let them evolve dur-
ing the development process without restraining the flexibility - needed to allow refactoring
- by publishing them.

1.4.1 When it Does Not Pay Off to Refactor

Refactoring can get a great deal out of decayed software but has no magic powers. If the
concerned code is neither able to compile or to run in a stable manner, it might be better to
throw it away and rewrite the software from scratch. This time using refactoring to avoid
the mistakes made earlier. Perhaps the system can be divided into strong encapsulated
loose coupled parts (subsystems) for which the decision of rewriting or refactoring can be
made independently.

Another reason not to refactor at a given moment is when a deadline is very close.
Then it would take more time to do the refactoring than the deadline allows. It will
be much more sensible to deliver the system as is and to delay the refactoring after the
deadline. The cost of delivering a system in such a state may be very high in terms of
maintenance and stability.

MARTIN FOWLER [Fowler, p.66] sees at this point no other reason not to refactor. The
notion of missing time to refactor is not an argument from his point of view:

1.4. INSUFFICIENCIES OF REFACTORING 15

Other than when you are very close to a deadline, however, you should not put
off refactoring because you haven’t got time. Experience with several projects
has shown that a bout results in increased productivity. Not having enough
time usually is a sign that you need to do some refactoring.

1.4.2 The Costs of Refactoring

But the costs of refactoring are differing in environments which do or do not support some
basic principles used for refactoring.

On the language/environment side it depends on how well the operations on the source
code are supported (see 1.7.4, p.21). But in general the cost of applying the basic text
modifications should be bearable.

As refactoring relies heavily on testing after each small step having a solid test suite
of unit tests for the whole system substantially reduces the costs which would be implied
by testing manually (if this is possible at all).

The costs of updating documentation of the project should not be underestimated as
applying refactorings involves changes in interfaces, names, parameter lists and so on.
That results in the change of the overall design of the system. All the documentation
concerning these issues must be updated to the current state of development. Better off
are development practices like XP which don’t rely that much on external documentation
but instead use the source code as main input for that.

The tests covering the system need an update as well as the interfaces and responsi-
bilities change. These necessary changes can contribute to higher costs as tests are mostly
very dependent on the implementation. Because between the steps of refactorings old
interfaces are first kept and later gradually extended by the new ones, all tests should run
without modification within the time frame of the refactoring. But afterwards when the
old interfaces are removed in favor of the new ones the test have to be updated as well.

1.4.3 Risks Involved When Doing Refactoring

As every technique that changes a running (perhaps even working) system refactoring is
not immune to introducing errors. Although there are several techniques which should
enable the programmer to avoid them or at least catch them early, introducing a failure
with refactoring can have serious consequences.

If refactoring is not used as part of the Extreme Programming process, where it is
applied throughout the development, but if it is used to clean up the code of a software
system that is already in production, before adding new functionality, the consequences
of introducing bugs without catching them are very severe.

Therefore refactoring should not be treated lightly, but instead done with care and the
possible problems in mind. The principles of refactoring like small steps, testing after each
step, doing changes in a predictable way and not mixing up restructuring and adding new
functionality, should make it impossible to introduce bugs while refactoring. Nonetheless
programmers are not infallible. After applying refactorings to a system and possibly before
adding the new functionality, the system should not only pass the unit tests required but
also a regressive functional test which should show no difference (except perhaps speed)
to the last run.

Even if there were errors introduced while refactoring the system it will be much easier
to track them (once they showed up) as the system is well structured with no duplicate
code, clean hierarchies and small units.

16 CHAPTER 1. INTRODUCTION

1.5 Refactoring vs. Design

It may sound unfamiliar but MARTIN FOWLER puts refactoring as a kind of complement
to design, not the design in general but the generally accepted upfront design which has
to

e occur before the implementation phase
e to cover all eventualities
e to provide the most possible flexibility

and which is based quite a lot on predictions.

Upfront design has its flaws. People are not very well at predicting the future especially
when the requirements might not be that clear. The only possible way to deal with these
problems is to design very flexible systems which can be extended in every imaginable
direction. These systems tend to be very complicated implying they are difficult to un-
derstand and to maintain. If a future change happens to be in the right direction all goes
well, but if not it’s often a horror to modify the complex structure. And what about all
of the changes that simply don’t happen? A lot of flexibility created for what? Nothing.

Upfront design has its benefits as well. One can create a design and writing the system
gets “just” being a craft. Design can provide a general first, accepted solution which covers
the available requirements. Using that design to implement the software provides you with
a running application that is already able to generate revenues for the customer. Although
it is not flexible enough to incoming future requirements or changes it has the ability to
grow.

A Dbenefit of a distinct design phase is the possible division of work. Professional
system analysts and designers (e.g. consultants) can be asked to design the system with
their experience and abilities. But even those experts don’t have the skill of clairvoyance.
Therefore a thorough system analysis is needed which must be based on a complete catalog
of requirements.

1.5.1 Iterative, Incremental Development

In contrast to the traditional processes (like “Waterfall”) the incremental, iterative de-
velopment process executes all the phases (analysis, design, etc.) more than once. Craig
Larman introduced such a process in his book “Applying UML and Patterns”. As the au-
thor has written a very focused introductory section and I can’t say it better than himself,
I'd like to quote the lines from his book [UML+Patterns, Larman).

An iterative life-cycle is based on successive enlargement and refinement of a
system through multiple development cycles of analysis, design, implementa-
tion and testing.

The system grows by adding new functions within each development cycle.
After a preliminary Plan and FElaborate phase, development proceeds in a Build
phase through a series of development cycles.

Each cycle tackles a relatively small set of requirements, proceeding through
analysis, design, construction and testing (see 1.1, p.17). The system grows
incrementally as each cycle is completed.

This is in contrast to a classic waterfall life-cycle in which each activity (anal-
ysis, design, and so on) is done once for the entire set of system requirements.

1.5. REFACTORING VS. DESIGN 17

Plan and)
Deplo
Elaborate Build epioy
Development Development
Cyclel Cycle?2
Refine Synchrorize Analyze Design Construct Test
Plan Artefacts

Figure 1.1: Iterative Development Cycles

Advantages of iterative development include:

e The complexity is never overwhelming.

e Early feedback is generated, because implementation occurs rapidly for a
small subset of the system.

The software development process that is described by Craig Larman is a kind of inter-
mediate between the traditional Waterfall model and the Extreme Programming method.

It already focuses on incremental analysis and design to avoid the high complexity that
is introduced by a large upfront analysis and design phase and to allow the adoption to
changing requirements.

He also shows the possibility to defer the consideration of requirements to later phases.
This allows the reduction of the scope that has to be handled in the current iteration cycle
with its fixed time-frame. The Exteme Programming method takes this approach even
further.

The recommended middle-ground strategy is to quickly create a rough concep-
tual model where the emphasis is on finding obvious concepts expressed in the
requirements while deferring a deep investigation. Later, within each develop-
ment cycle, the conceptual model is incrementally refined and extended for the
requirements under consideration within that cycle.

This first conceptual model shall cover the architectural questions as the development
of the system must be based on a solid foundation of architecture.

But he also stresses the importance of a detailed analysis and design to reduce the
risks involved in developing a software system. He uses the exponential cost curve (see
1.2, p.18) to explain the higher costs of making changes in later phases of development
(e.g. implementation) - “software is ‘harder’ than it sounds”.

18 CHAPTER 1. INTRODUCTION

The addition of functionality is done by adapting and changing the design and later
modifying the code to resemble the actual design.

The application of refactorings to the code created and modified during the construction
phase doesn’t seem to be necessary, because the updated design should incorporate the
changes needed for the current development cycle. But Craig Larman does not forget that
“during programming and testing myriad changes will be made and detailed problems will
be uncovered and resolved.” [UML+Patterns, Larman, p.297] When implementing these
changes refactoring can be used to provide a smooth transition from the existing design
to a better suited one.

The changes made during the construction phase are integrated in the design of the
next cycle while the synchronize artifacts phase

The disadvantage of the incremental process are the too high expectations of the cus-
tomer and managment because of early visibile (user interface) prototypes or releases
created.

1.5.2 Extreme Programming

The approach taken by Craig Larman is even taken further by the Extreme Programming
method Kent Beck devised. The main difference to the incremental process discussed
above is that the burden of a extensive upfront design is reduced to the most basic needs.
The real “design” occurs when writing the code to fulfill the Engineering task at hand
which is a part of a greater user story (much like an use case). Then refactoring is used
to establish the design needed for implementing the functionality at issue. Implementing
the functionality after refactoring adds further details to the design implicitly created.

cost cost

time time

Figure 1.2: Comparison of Cost Curves of Extreme Programming and Conventional De-
velopment Process

The Extreme Programming [Beck,Xp] methodology uses the notion of a flat cost of
change curve vs. the exponential cost of change curve used in traditional software engi-
neering. Therefore it does not matter that much if decisions are delayed if they are not
important enough or if they are to costly to implement right now.

With that advantage in mind, it’s possible to start with a very simple solution. This
first result has to be only as flexible as necessary, because it can be extended without a
big effort. Refactoring helps further leveling the expenditure by constantly keeping the
software in a clear structure reducing the hard work needed for the future extension.

Extreme Programming uses a initial small upfront design of the simplest solution for the
basic requirements to create a running system. Using the principles of this methodology,
the programmers work (in pairs) with the code to improve the design by using refactoring

1.5. REFACTORING VS. DESIGN 19

when its necessary for adding functions, gaining simpler solutions or just cleaning up the
code.

As refactoring does not change any behavior of the system, it must not affect the
running version which is often already useful for the customer included at the development
site. As he chooses the next most valuable functions/requirements/stories which have to
be added, he steers the direction in which the project does evolve in small steps - every
time able to change the necessary direction.

A Metaphor for XP KENT BECK [Beck,Xp] also introduces the metaphor of car driv-
ing when explaining why it is more useful to use an incremental approach instead of heavy
upfront design.

Driving is not about getting the car going in the right direction. Driving is
about constantly paying attention, making a little correction this way, a little
correction that way.

This is the paradigm for XP. There is no such thing as straight and level.
Even if things seem to be going perfectly, you don’t take your eyes of the road.
Change is the only constant. Always be prepared to move a little this way, a
little that way. Sometimes maybe you have to move in a completely different
direction. That’s life as a programmer.

1.5.3 Refactoring Is Analyzing

I found this very interesting statement by WALDEN MATTHEWS on the relationship of
refactoring to the development process on the WiKi Pages:

When you are refactoring, you are analyzing. The right time to do it cannot
come from some process manual or methodology - it’s when you see an oppor-
tunity to express something more powerfully and simply. The project phase
and the medium are unimportant. The people, their skills, and the project
context are important. And it’s far more important to do it when you can
than to quibble about the ideal time to do it....

I fancy I'm following my own advice here, by pointing out the commonality
between code refactoring and other forms of analysis. This is the essence of
systems development, no matter what name you give it.

[Wiki, RefactorMercilessy, WaldenMathews]

1.5.4 Refactoring Adds Flexibility

Flexibility is one thing that has to be payed for in traditional development by anticipating
the flexibility needed and incorporating it in the design of the system. On the other
hand the flexibility of not being constraint in the direction of development comes with
refactoring. MARTIN FOWLER [Fowler, p.68] puts it this way:

Refactoring can lead to simpler designs without sacrificing flexibility. This
makes the design process easier and less stressful. Once you have a broad sense
of things that refactor easily, you don’t even think of the flexible solutions. You
have the confidence to refactor the time comes. You build the simplest thing
that can possibly work. As for the flexible, complex design, most of the time
you aren’t going to need it.

20 CHAPTER 1. INTRODUCTION

1.6 When its Necessary to Refactor

As refactoring should be seen as a basic principle of programming, it does not require a
special methodology. It can be used in the implementation phase every time it is necessary.
But it can be supported in various ways. Basically experience in programming helps a lot
(especially in object-oriented-programming). With that experience you are able to see the
places where refactoring would make the difference. KENT BECK and MARTIN FOWLER
name these parts of the code where refactoring is urgently necessary “bad smells in code”
[Fowler, p.75]. A number of the smells they refer to are listed below:

Duplicate Code main reason to refactor

Long Method inherited from procedural programming

Large Class too much done by a single class

Long Parameter List are no longer necessary when working with objects

Divergent Change one class is commonly changed in different ways for different reasons
Shotgun Surgery changes influence to many classes and methods

Feature Envy too much interest in other objects data

Data Clumps data that is used together everywhere would make a great class of its own
Primitive Obsession use classes in addition or instead of primitive data types

Switch Statements object orientation has other ways to deal with actions depending
on types

Parallel Inheritance Hierarchies sometimes useful but often unnecessary

Lazy Class A class that isn’t doing enough to pay for itself should be eliminated.
Speculative Generality don’t invest to much in flexibility for the future

Message Chain hard couple the client to the structure of navigation

Middle Man should be removed if delegation is all he does

Inappropriate Intimacy restricting the knowledge of the internals of other classes
Incomplete Library Class must sometimes be extended to add wanted functionality
Data Class should get additional tasks which deal with its data to raise its importance
Refused Bequest if subclasses use only very little of what they are given by their parents

Comments a comment is a good place to say why you did something not what you did

1.7 The Craft of Refactoring, or what helps doing it

But experience is not everything, often your mind is clouded with the wisdom you have and
you don’t even smell these bad smells. Then you are fortunate if you have a programming
partner that helps you by opening your eyes or by doing it himself.

1.7. THE CRAFT OF REFACTORING 21

1.7.1 Patterns

The use of refactoring is also eased if you are familiar with design patterns. As patterns
reflect expert knowledge - solutions for design problems in a particular context, they point
to a direction which a refactoring can take. For instance the Replace Conditional with
Polymorphism refactoring is supported by the strategy or state patterns [Gang of Four].
Other design patterns embody more the goal to which the refactoring should strive. Like
the Composite pattern which can be (accidentally) reached by using FEztract Superclass
and Pull Up Method on a set of classes with common methods.

1.7.2 Extreme Programming, XP

Having understood the principles of Extreme Programming by KENT BECK [Beck,Xp] does
also help a lot, even when you are not able or allowed to develop with this demanding
and impressively simple methodology. Refactoring is one of the principles of his approach
because it allows to improve the design of a software gradually without compromising
its functionality. This supports the notion of incremental design, with only the simplest
solution actually in place, as this costs as less as possible and generates the highest value.
Moreover it allows changes in any direction if wanted or needed.

1.7.3 The Hard Work

When using refactoring, unfortunately a lot of the work that is needed to be done are stupid
search and replace operations and cut’n’paste with some corrections applied afterwards.
Although you have to decide which refactoring could improve your code at this place and
time, implementing the refactoring is quite boring work. In order to reduce the errors
created when doing refactoring, it is the best way to introduce the changes in a ordered
manner using step-by-step instructions, which should be each followed by the run of the
automatic unit-test-suite.

Using an IDE that supports enhanced search and replace functionality is very useful
but even that does not make refactoring easy enough to really use it often and regularly.
It takes too much time to rename a field or method with a manual search and replace
operation as you have to find all calls or references to the item. If the method is overloaded,
i.e. the same method name is used with various parameter lists, it has to be decided which
occurrences have to be replaced and which not.

1.7.4 Language Advantages

If the programming language is not based on source code text files as the basic place to
keep the code but instead uses a database or a repository to hold the tokens, it gets easier
to apply refactorings. In the repository each element of the programming language can
be addressed by itself. There is no danger of mixing up different elements with the same
name. The references can also be updated immediately because they are represented as
data structures within the repository. Smalltalk uses such an approach, other languages
support it as well. For C++ and Java it is possible to use the IBM Visual Age development
environment which is based on the principle of keeping source code elements in a repository.

22 CHAPTER 1. INTRODUCTION

1.7.5 Refactoring vs. Rewriting

If rewriting is the hard way of changing a system, refactoring is the soft one. It even makes
rewriting superfluous for some parts of the code as it uses the available code to engineer
a better version:

Refactoring is the moving of units of functionality from one place to another in
your program. It encompasses things as simple as renaming methods, and as
complex as adding a helper class, moving methods to classes where they better
belong, and creating subclasses and superclasses to reduce the overall amount
of code in the system. Refactoring has as a primary objective, getting each
piece of functionality to exist in exactly one place in the software. Once that
has happened, if there is something wrong with a particular method, there’s
just one method to ”rewrite”. What emerges is that continuous refactoring
makes most rewriting unnecessary. [Wiki, RefactoringAndRewriting]

Chapter 2

The Development Of Refactoring

2.1 Looking at the History

The history of refactoring starts a lot earlier than one would think. Refactoring is a
common practice of programmers who have to deal with bad code. Well structured code
is easier maintained and extended, there is no way out of this. But like Patterns it is one
of the hidden practices or better implicit knowledge that has to be digged out and named
explicitely to take its value to other developers.

The first people who seem to have explicitely caught its importance were WARD CUN-
NINGHAM and KENT BECK who worked with Smalltalk from the 1980s onward [Fowler,
p.71]. Those two eventually worked on creating a software development process which
integrates refactoring as a basic principle [Beck,Xp].

Another man with strong interests in refactoring, especially of frameworks, was RALPH
JOHNSON, a professor at the University of Illinois, whose students shared his interests and
took it even further.

But the first scientific exploration of the principles which support refactoring, was done
by one of his students. WILLIAM OPDYKE [Opdyke, Thesis| examined the theories of the
preservation of the semantics by applying refactorings. He also provided a first list of
refactorings, which is referred to until now. It was his intention to show the possibility of
creating a tool that can implement chosen refactorings by itself.

His ideas and the refactorings he prove to be semantics-preserving were taken by JOHN
BRANT, DON ROBERTS and RALPH JOHNSON further on the way [TAPOS] to finally create
the Refactoring Browser [Refactoring Browser| which is up to date the most significant tool
for (Smalltalk) developers who want to refactor their code.

2.1.1 Catalogs of Refactorings

Besides the tool idea another successful approach was developed to help developers with
the application of refactoring in the least difficult way.

The development of a catalog of refactorings, which is to be found in his [Fowler] book,
and also online, was the intention of MARTIN FOWLER. Such a catalog does not only
lists the currently used and well tried refactorings by name but also introduces a standard
notation.

This standard notation makes it easier for anyone to catch the main idea of the refac-
toring, follow the example supplied and the use the step-by-step instructions to apply the
refactoring without introducing bugs.

23

24 CHAPTER 2. DEVELOPMENT

Unfortunately the idea of a standard notation was not that successful when it was
applied to design patterns. Anyone who thought he could contribute to the area of design
patterns, thought also of a better notation for writing them down as the original notation
by the Gang of Four [Gang of Four] didn’t seem to be sufficient.

The notation for refactorings consists of the following elements:

a name for building a vocabulary much like the pattern one

a short summary of when the refactoring is needed and what it does, including a de-
scription of the problem, a reflection what one does and mostly a sketch either in
code (before vs. after) or as an UML diagram

the motivation describes why the refactoring should be applied and when not

the mechanics are a step-by-step description of how to carry out the refactoring, short
notes which can be easily referred to

the example should show a very simple application of the refactoring

With the possibilities of the Internet such a catalog can be easily made available,
maintained and extended by anyone who thinks he can contribute to the collection of
refactorings, which is also encouraged by MARTIN FOWLER.

MARTIN FOWLER [Fowler, p.107] is aware of the fact that his catalog is by now no
complete collection of sensible refactorings:

As you use the refactorings bear in mind that they are a starting point. You
will doubtless find gaps in them. I'm publishing them now because although
they are not perfect, I do believe they are useful. I believe they will give you
a starting point that will improve your ability to refactor efficiently. That is
what they do for me.

2.2 Tools Needed

2.2.1 Thinking About Tools

Applying refactorings such as FEztract Method requires additional thoughts, but which
tend to resemble each other when repeating the refactoring. Doing all the refactorings by
hand, can get very boring. The solution for this problem is to create a tool that helps
implementing most of the refactorings. This is done by checking the constraints implied by
the refactorings, analyzing the syntax and semantics (e.g. for transforming local variables
or conditionals) and presenting the results in a convenient way. Then the user is able to
choose whether to use the refactoring or not and implement it with click of the mouse.
Then the tool does all the modifications necessary. Afterwards the unit tests are run
automatically and if the results are correct the user can proceed to the next refactoring.

It would be great if such a tool could also provide the ability to autonomously decide
which refactorings would structure the code in a better way and implement them itself.
But as stated by MARTIN FOWLER and KENT BECK [Fowler, p.75], it is a very intuitive
process to decide if refactoring is necessary and which refactorings could contribute best
to increase the quality of the code.

One thing we won’t try to do here is give you precise criteria for when a
refactoring is overdue. In our experience no set of metrics rivals informed

2.3. A SHORT LOOK ON SOME TOOLS AVAILABLE 25

human intuition. What we will do is give you indications that there is trouble
that can be solved by refactoring. You will have to develop your own sense of
how many instance variables are too many instance variables and how many
lines of code in a method are too many lines.

Therefore a tool like the one described above is only a helper in applying refactorings
but a very powerful one. It reduces the costs of doing refactorings in scope of time, cost
and effort to enable the programmer to refactor efficiently without much thinking about
productivity losses. It also contributes to instantiate refactoring as an integrated practice
within the implementation.

2.2.2 History of Tool Development

The begin of the research done for developing such a tool was in 1992, when WILLIAM
OPDYKE presented his doctoral thesis “Refactoring Object-Oriented Frameworks” where
he contemplated the theoretical fundamentals needed to create an automatic tool which
is able to implement refactorings in a safe manner.

Some time after that JOHN BRANT and DON ROBERTS created the “Refactoring
Browser” for the Smalltalk language that supports auto-magically refactoring the parts of
the code which are in need of it.

By now several tools for other programming languages as Java or C++ are available
such as JRefactory (Java), Intelli] Renamer (Java), Xref-Speller Plug-in for Emacs (Java,
C++, C) and Guru (Self). Unfortunately none of them is as complete as the Refactoring
Browser for Smalltalk.

2.3 A Short Look on Some Tools Available

2.3.1 Refactoring Browser (Smalltalk)

The Smalltalk community was the first one which used refactorings consistently during the
development process and many of the contributors like RALPH JOHNSON, KENT BECK,
DoN ROBERTS, MARTIN FOWLER et.al. originated from there, the development of the
Refactoring Browser was only a logical step within the development. Fortunately the
Smalltalk programming environment provides ideal conditions for implementing such an
tool, as is later cited in this section.

Because of my shortcomings - I do neither have access nor knowledge of the Smalltalk
programming language - [am not able to provide firsthand information about the tool but
rather cite the authors [TAPOS] first as well as an enthusiastic user [Wiki, RefactoringBrowser-
Kent Beck|:

Since refactoring occurs at all levels within the software development life cycle, the
ability to perform refactorings automatically is crucial to software evolution.

The Smalltalk Refactoring Browser is a tool that carries out many refactorings auto-
matically, and provides an environment for improving the structure of Smalltalk programs.
It makes refactoring safe and simple, and so reduces the cost of making reusable software.

The goal of our research is to move refactoring into the mainstream of program devel-
opment. The only way that this can occur is to present refactorings to developers in such
a way that they cannot help but use them. To do this, the refactoring tool must fit the
way that they work. This goal imposes the following design criteria on the Refactoring
Browser:

e integrated into the standard development tools e.g. the browser in Smalltalk

26 CHAPTER 2. DEVELOPMENT

e must be fast. Smalltalk programmers are used to being able to immediately see the
results of a change. ... Therefore, refactorings that take a long time to perform an
analysis will not be used.

e avoid totally automatic reorganization. e.g. doesn’t generate names (which would
have no meaning in the user domain) but prompt for them

Another of the key design criteria is that we assume that there is an intelligence directing
the refactoring process. ... It has been our experience that systems that perform automatic
code reorganization are of little utility since they typically are algorithmic and have no
understanding of the problem domain.

Our approach is to provide a tool that will search for places in your program where
code is duplicated, or unused, and point them out. This allows a human to make the
final call whether or not the code should be consolidated and to provide a semantically
meaningful name.

There are some features of the Smalltalk language and the development environment
Visual Works that allow an easier application of refactorings:

e ...reflective facilities, that is, the ability for the language to examine and modify
its own structures. ...Refactoring can be performed in the absence of reflective
facilities, but then requires a separate, metalanguage that can be used to manipulate
the original program. Having a single language simplifies the process.

e ...access to an easily manipulable representation of the program (e.g. the parse tree),
which is provided by the VisualWorks environment; ...the transformations that
refactorings require are much easier to implement as parse tree to parse tree trans-
formations rather than string to string transformations. Other dialects of Smalltalk
do not provide this level of access to the system, which is one of the major reasons
the Refactoring Browser has not been ported to other environments.

e ...To ensure that the behavior of a program does not change, every refactoring has
associated with it a set of preconditions that must be met in order to apply the
transformation. ...

The static properties of the program must be analyzed to determine if these precon-
ditions are satisfied before performing a refactoring. ...Since we reused many of the
existing static checks present in the compilation framework, the refactoring frame-
work is much simpler than it would be if we had implemented all of these checks
ourselves.

e ... The Refactoring Browser uses method wrappers to collect runtime information.
These wrappers are activated when the wrapped method is called and when it re-
turns. ...As the program runs, the wrapper detects sites that call the original
method. Whenever a call to the old method is detected, the method wrapper sus-
pends execution of the program, goes up the call stack to the sender and changes
the source code to refer to the new, renamed method. Therefore, as the program is
exercised, it converges towards a correctly refactored program. ...

The major drawback to this type of refactoring is that the refactoring is only as good
as your test suite. If there are pieces of code that are not executed, they will never
be analyzed, and the refactoring will not be completed for that particular section of
code.

2.3. A SHORT LOOK ON SOME TOOLS AVAILABLE 27

It is intended by the authors of the tool to extend it to enable users to do their
refactorings even quicker and without reluctance:

e the next step on the scale of refactorings are bigger ones which are composed of
the well known basic refactorings which were first introduced by WiLLAM OPDYKE
[Opdyke, Thesis|, the application of composite refactorings has the advantage that
after performing one refactoring certain postconditions become true. These post-
conditions can be used without expensive analysis to satisfy preconditions of later
refactorings. Therefore, refactorings are sometimes easier to perform in a composi-
tion than they are independently. Developing a system that incorporates these batch
refactorings is currently being researched.

e Every creator of an API or open library has to deal with problems originating from
the evolution of his product, which does also affect the interfaces to the outside
world. The authors of the Refactoring Browser want to enable their users to have
a partially automatic refactoring of older software to enable it to use the updated
interface of the concerned API.

Refactoring is a common operation in the software life cycle and the Refactoring
Browser provides automatic support for many of the common transformations that come
up in Smalltalk development. The Refactoring Browser is a practical tool in that it can
perform correct refactorings on nearly all Smalltalk programs. In fact, we regularly use
the Refactoring Browser on itself. That is, we use the tool to refactor its own source
code. Additionally, the Refactoring Browser has been used to help develop a wide range
of frameworks from the HotDraw framework for graphical editors, to financial models be-
ing developed by Caterpillar, to prototypes and models for a major telecommunications
company.

Now KENT BECK shares [Wiki, RefactoringBrowser-Kent Beck] his experiences with
the Refactoring Browser:

This is absolutely the greatest piece of programming software to come out since
the original Smalltalk browser. It completely changes the way you think about
programming. All those niggling little ”well, I should change this name but...”
thoughts go away, because you just change the name because there is always
a single menu item to just change the name.. ..

The best thing about Refactory is how safe it is. As long as you don’t manually
edit the source code, you are nearly guaranteed (modulo things like choosing
the wrong class for a "move to component”) that you won’t change the seman-
tics of the program. The more I use it, the more aggressive I am slamming
logic around until it makes sense.

Changing names is the least of its tricks. Some others are:
e FEzxtract Method — make a sub-method out of the selected text. If there is
already an equivalent method, optionally invoke that instead.

e Inline Method — put the invoked code in place of the invocation. This
even works for methods in other classes.

e Move To Component — move the code for a method to another class and
invoke it

28 CHAPTER 2. DEVELOPMENT

Some other cool tricks:

o Add Parameter — add a parameter to every implementor of a message,
and to every invocation of the message (with a default value)

o Remowve Parameter —if no implementor of the message uses the parameter,
remove it from the methods and the invocations

e Cross referencing from inside the source code — select any program el-
ement in the text and you get a choice of several specialized browsers—
senders/implementors of a message, readers/writers of a variable

e Rename — you can rename classes, variables (all types), and messages

o Abstract/Concrete Instance Variables — make all references to an instance
variable go through a message, or make all references direct

With unlimited undo, you can bravely try experiments that might not pan out.

2.3.2 JRefactory (Java)

UML Dia

1 For emw.metawork

File Edit Zoom

RAMISockefFactory

RMICTientSocketFactory Seridizable RMIServer Socketbactory
Package: java.rmi server «Interfaces P — imntertaces
Fackage: javarmicerver Package: java.ig Package: java.rmi.server
[@RMISocketFactor)
& createSocket{host:Stving, port:int) : Sockel [@createSocket{host String, portint) - Socket]

@ createServerSocker(porveing © Senversocket
@setSocketFactorvi{fac:RMISocketFactory) : void <| R

[ecreateServer Socket{portint) : ServerSocket

@aerSocketFactory() : RMISocketFactory
pgetDefaultSocketFactory() : RMISocketFactary \

/

l@setFailureHandler{fh:RMIFailureHandler} : vaid \
@getFailureHandler() : RMIFailureHandler ! /' [
T k RMISSLServerSocketFactory
RMISSLClientSocketFactor [Fde portan
PortRMI Socketbactory ¥ @.CE19DONIL T
T o [@RMISSLServer socketFactorwaport int)

— j@createSocket(host String, portint) . Socket| @RMISSLServer socketFactoryl)
@PortRMISocketFactoryiaportint) @createServerSocket(port:int) : ServerSocket
@create Sockenhoststring, portine) © Socket
@create ServerSocket{portint) : ServerSocket|

File Edit

ID

com sun image codec jpea [show
com.sun.javaswing.plaf.mot|
com.sun java.swing.plaf.win

emw.metaworks. client Hide

emw metaworks model =
emw.metaworks. model.cons

emw.metaworks server Reload
[Statem ent Total

5 emw.metawarks sl
Statem ent Average 1.25) emw.metawarks. util
JF aram efer Total 4 ava.applet
[P aramt eter Average 1.0 ERLENE
Public Method Count 3 ava.awt ;"“’" q
Gth er Method Count I R ranster
[Class Metric Count 0 e LT
[nstance Variable Count 1 ava awt. event
Class Variable Count 0

ava.awt.font

[l [¥]

[4]

Figure 2.1: JRefactory UML Interface, including Metrics and Package Selector

JRefactory [JRefactory] is a tool provided under the GPL written in Java by CHRIS
SEGUIN to allow easy application of refactorings by implementing a user interface that is

2.3. A SHORT LOOK ON SOME TOOLS AVAILABLE 29

based on UML diagrams as visualization of the concerned Java classes. It can cooperate
with the JBuilder [JBuilder IDE] and Elixir [Elixir IDE] IDE’s but also be used in a com-
mand line variant. When using with an IDE the tool supports switching to the appropriate
code line for a method or field of a class.

These diagrams are compiled out of the Java source files. The incorporation of the
supplied source files of the Java Development Kit [JDK] is also required (it takes a long
time). The user interface allows zooming (in certain steps), moving classes and changing
association lines.

Refactorings are applied by selecting the class(es) to be modified and selecting the
appropriate refactoring in a pop-up menu.

The program supports the following refactorings:

e Repackage or mowve class
e Rename class

o Add an abstract parent class
e Adds a child class

e Remowves a class

o Push up field

e Push down field

o Push up method

e Push up abstract method
e Push down method

o Move method

A feature that is more interesting than really helpful are the metrics supplied. It
is possible to show the metrics for a package or a class, including absolute and average
numbers of classes, methods, statements each averaged for the higher structural units (e.g.
average statements per class, or per method). The metric information highlights problem
classes and methods with with either to much methods or to much statements per method.
See code smell LongMethod (see 1.6, p.20). Unfotunately the averaged numbers are shown
with up to 10 decimal places which does more hindering than helping. I think it would be
helpful if the numbers that exceed certain ranges (low and high) were highlighted.

When testing the program the limited possibilities of interfering with the user interface
showed up to restrict its usefulness. As the classes of a whole package are shown in one
UML class diagram, it easily gets confusing because there are too many classes shown at
one time. The fixed step zooming possibilities are of no help either. The class names can
only be read at the highest magnification and have to be guessed at the other steps. No
class can be hidden to allow focusing on problem areas and packages with many classes
slow down the user interface very much.

The classes are arranged in a very inconvenient way - they are just lined up horizon-
tally. It would be very useful if the tool would incorporate the functionality of any UML

30 CHAPTER 2. DEVELOPMENT

diagram editor that is required for useful operation on the diagram (e.g. continuous zoom-
ing, automatic ordering, possibility to hide classes/methods per diagram or per class or
template, etc.) or even better if if was incorporated in a UML tool itself.

It also produced several exceptions partially originating from the JDK-classes. The
refactorings which were applied to the test package worked quite well. The newly im-
plemented Move Method refactoring was everywhere disabled, therefore it could not be
tested. The Renaming worked only with classes. When refactorings were applied to the
test package they didn’t show up on the diagrams, not even after reloading them. Only
after exiting the tool and restarting it, the applied refactorings got visible.

As the tool does not operate on source code level, only general restructuring refactor-
ings can be used. Therefore it would be necessary to use another tool to do the source
code level refactorings as Eztract Method or Decompose Conditional.

2.3.3 IntelliJ Renamer (Java)

Intellid Renamer - [shome/mhid/refac/jrenamer/trees.ipr]

File Edit Zearch Commander Refactoring Wiew Help

B # w X b ® 7
[Project] Tree [Project]

. [] 7 fhome/mhld;javassrefrefac,sreftree
mggetType(] : String
) getVolumel) @ int
o) age :int

o) branches : int

o) diameter : int
V] height : int

[public abstract [

[l Commander [Javaviewer|

8.8 (=M
@getTypei]:Strmg of class Tree

= Found usages (4 usages in 4 files)

H:El E-EE <default=

2 = @ fhome/mhld/javajsrefrefac/sreftreefCherry.java
m (5, 5) public String getTypel] { return "Cherry"; }

E] fhome/mhld/javajsre/refacisrcftreefFirjava

;lj fhomefmhld/javaisrefrefacsreftree/Llarch.java

.ﬂ fhomefmhld/javajsrefrefac/sreftreefOak java

Export... ‘ | Close | | Help

Usages list

Figure 2.2: IntelliJ Renamer, Search Results for a Method Search

The IntelliJ Renamer [Renamer| is a commercial product which intends to support
developers who have to do a lot of renaming, e.g. in order to make their code more
communicating. It was created by IntelliJ Software which is located in Prague.

The tool focuses on finding uses and dependencies of packages, classes, methods and
variables and offers the possibility of renaming. The general approach is to list the found
occurrences and references of the symbol to be renamed in a comprehensive list. There
each occurrence can be excluded from the renaming and the list may be exported to a text
file. After checking the list the renaming is invoked for all occurrences on this list.

2.3. A SHORT LOOK ON SOME TOOLS AVAILABLE 31

It allows to move packages and classes to other packages as well but no moving of
variables or methods.

Another useful functionality covers the updating of software systems to changed API’s
named migration. The migration feature is used by specifying number of renamings of
classes and packages which is processed at once for a whole project and can be repeated.
As an example the migration map for the changes of the swing package structure (i.e.
com.sun.java.swing.* to javax.swing.*) is supplied.

When using on the test classes the occurrences of the searched classes, variables and
methods were correctly found. The renaming of classes worked as well including the
changes to import and extend statements. But when moving classes to another package,
the package statement was included at the end of the file which does not comply to the
java specification and is a serious bug. The import statements for the moved class are
generated in the right way.

Moving features are only available to classes and packages. The number of classes to
be moved to a new packages is restricted to one at one time.

The Renamer offers unlimited undo. It worked in most cases but sometimes created
an exception which put the system in a inconsistent state. After undoing a class move the
code views did not reflect the change but had to be closed and reopened to do so.

Generally, it may be stated that the tool supports renaming in a very useful way (as its
name already suggests) but has limited use elsewhere. Finding occurrences and references
of symbols is the main focus of the tool, which is performed with a lot of options with
high speed and correctly.

It shall also support a synchronization feature that allows it to react on changes to the
source files done by external editors. I was not able to test this functionality because my
trial license ended after a fortnight. Therefore I quote the web site [Renamer]:

Renamer can be used along with your favorite IDE or editor, because it auto-
matically synchronizes with all external source code modifications you make.
It also automatically saves all changes when you switch to other applications.

2.3.4 Xref-Speller for Emacs (Java,C++,C)

The xref program was developed by MARIAN VITTEK [Xref-Speller| to support extend-
ing source browsing and symbol completion functionality under a variety of development
environments. Later refactoring functionality was added. It seemed to be no problem at
all because the source of the project to be refactored is already available as a parse tree
to the xref program. And similar to the RefactoringBrower [TAPOS] it is much easier to
implement refactorings to a parse tree than to pure source code.

Actually the Xref-Speller (see 2.3, p.32)is just a front end for (X)Emacs and Kawa for
the tool xref which runs as a separated process and communicates with the front end.

By now the Java and C language are supported by xref. The C part of the program
was tested with the linux kernel sources (about 1.5 million lines of code). It includes a full
featured preprocessor needed for parsing the preprocessor instructions of C-programs. The
creation of the parse tree for the Java language is not done by parsing the source files but
rather by decompiling the byte code of the class-files generated by the java compiler, as
there the type information (e.g. symbol types, function signatures etc.) needed is already
verified and non-ambiguously stored by the compiler.

The xref tools supports the notion of projects and allows the user to include/exclude
specific directories to use. The needed files are parsed by an update function into a cross-
references file which can be updated either by reexamining all files or by updating only

32 CHAPTER 2. DEVELOPMENT

o.home.ne
 Buffers Files Tools Edit Search |Xref|Java Help
3 Set Current Project
3 FEEIFR SRS Create Xref Tags File
Update Xref Tags File
Fast Update of Xref Tags File
Aok :
Aktualisiert die Daten, joist and Push References ind in der DB.
Wenn das Feld "oid" nulliGo to the Definition and Push (f6} | crzoygt werden, ™
ansonsten werden die Daten iPrevious Reference {f3)
Bparam data Daten Hext Reference {fd)»
Ereturn die Oids der Dat
iy Pop and Return
protected Object update Complete identifier (f8) [rows Exception §
if (data==null) ret penove Xref Window {(F7)
Statement updateStm Safe Renane
FesultSet updateRse; Search Synbol in »
try £ Argunent Hanipulations P: Push References

updateStmt = ge

-

Extract Region into a Delete Argument

Force Dialog for Hext Push Insert Argument

String gquery = null:ogptions Shift Argument
Object oid = data.g guout ¥ref

Exchange Argunents

if (data.wasRead()) f
A/ Datensatz vorhanden -» update

guery=databaseFormat.createllpdatel] I
Debug.dbg("executing: " + gueryl;
i3] erImpl.java 11:4 30 Abki ——L555-—87 % ———————————— —

emw.metaworks.server.DatabaseFormat .createUpdateStatement (Lemw .metawarks . ms

odel.Datajljava.lang.0bject;) :DatabaseFormat.java

emw . .metaworks.server . Oracleformat..createlpdatestatement (Lemw . metaworks . mod*
el .Data;lLjava.lang.Object;) :OraclefFormat. java
emw.metaworks.server.OracleFormat .createlUpdateStatement (Lemw . metaworks . mod™
el .Data;Ljava.lang.0Object;] :OraclefFormat. java

emw . .metaworks.server .ProgressFormat .createlpdateStatement (Lemw . metaworks .m*
odel .Data;ljava.lang.0bject;) :ProgressFormat.java

emw . .metaworks.server .ProgressFormat .createlpdateStatement (Lemw . metaworks . m*
odel .Data;lLjava.lang.Object;) :ProgressFormat.java

11:47 0,13 (Fundamental J—-L1--A11

emw . metaworks .server . DatabaseFormat .crea eUpdateStaement(Lemw.metawDPks.m\
odel .Data;lLjava.lang.Object;) :DatabaseFormat.java
L]
T

Figure 2.3: The Xref-Speller Interface within Emacs

modified files. This cross-references file is used for all operations as it includes a parse tree
of the projects classes.

The refactoring currently implemented in xref are the extraction of marked code into a
new method, inclusively creating a call to the new method at its old place. This functional-
ity can be used to do the refactorings Extract Method, Consolidate Conditional Expression,
Decompose Conditional.

Another refactoring supporting functionality is the modification of function parame-
ters to do Add Parameter, Remove Parameter, Parameterize Method. Unfortunately the
implementation of Insert Parameter lacks the ability of the Refactoring Browser to supply
a default value and also does not care about the use of parameters within the method
body which were deleted from the parameter list.

2.3. A SHORT LOOK ON SOME TOOLS AVAILABLE 33

The renaming refactorings can be achieved by using the renaming possibilities offered
by xref. As the renaming occurs at the parse tree level, it is not subject to unintendedly
renaming the wrong occurrences (depending on type, method signature).

Xref is also able to generate html files for all the source code of a project, including
references between all the generated files at each occurrence of variable, class or method
names to the correct source of the declaration. This is very helpful when parsing through
the static inheritance and association structure of the project.

In general it has to be said that the Xref-Speller is a very useful tool for users of
(X)Emacs/Kawa, which allows to reduce the tedious work connected to the application
of the refactorings mentioned. Besides the parsing and completion functionality at parse
tree level outperforms the ctags functions available within Emacs in scope of correctness.

There are also a lot of possibilities how to extend the xref program which would make
it even easier to browse the static inheritance and association structure of a project and
allow the user to apply more refactorings without much manual intervention.

Chapter 3

Refactoring an Example

3.1 Refactoring Examples in General

Refactoring a piece of code is a very extensive process which contains many small steps
with a lot of testing in between. Therefore it is very complicated to show an example
refactoring within the limitations of a written work (e.g. this paper).

The most reasonable approach would be:

1

2.

10.

11.

12.

listing the existing code,

pointing at the places where the code smells claim refactorings to be applied,

. explaining the choice, which refactoring should be used,

looking at possible problems occurring by refactoring,

. writing down unit tests (if they don’t exist yet), for checking the current functionality,

. listing the unit tests and mentioning possible places where they could break,

applying the refactorings step by step,

. thereby listing the code fragments which have changed (highlighting small changes

and describing big ones),

. running tests in between the steps, when they break the refactoring has to be undone

and redone in smaller steps,
commenting on that,

after the refactoring was completed, the modification should be summarized to which
new methods and classes were created, which (re)moved, etc,

the complete new code should be listed as well, highlighting the changes in the whole
picture

It is understandably that such an extensive visualization would require too many pages,
even for applying just one simple refactoring. As MARTIN FOWLER [Fowler, p.1] puts it:

I tried and even a slightly complicated example runs to more than a hundred
pages. ...

34

3.2. REASONS FOR CHOOSING THIS EXAMPLE 35

Therefore I think the best way of refactoring an example would be do speak generally
about the reasons why its necessary to refactor especially this code, what refactorings were
applied, which effects did they have and what was the result of refactoring the code.

The problems arising from refactoring should not be spared and a very small refactoring
should be shown in full length (although I fear that it will easily outsize its importance).
The general restructuring that will be the result of the refactoring session will be shown
in UML diagrams rather than in code, as this is more comprehensible.

But now let’s go on.

3.2 Reasons For Choosing This Example

The example code is taken from a framework I developed when working for a customer
who was in need of a B2B bourse for dairy production commodities (e.g. milk, cream etc.).
It was designed upfront with a tree tier architecture consisting of clients connected to an
application server which communicated with a database server working with the database.

As development goes, the initial prototype was taken along the development process to
evolve into the final system. Quite early in development it showed up that the functionality
could be easily divided into a general part representing a framework for database front-ends
and a customer-specific part, that covers the requirements introduced by the customer.

The framework derived from this development is also used for another project - an
ordering system for semi-manufactured products in the seals producing industry.

Like many other system, which evolved from the basic requirements made, the system
was adapted to new requirements by just implementing the necessary code, without making
design considerations. It did not depart from its original design, but thats the problem
at all. The new requirements (e.g. using different databases, changing parts of describing
metadata at runtime, implementing multiple language support etc.) were not taken as a
reason to restructure the design and adapt it to the new demands, but rather added for
their own sake.

Refactoring the whole framework would be a quite extensive task as there are no unit
tests covering its functionality. As it is an distributed architecture, implementing them
would require either a running, stable context or complete stubs to integrate the tested
components (see [Nygard| for testing of distributed systems).

I chose the database server class as an example for this paper, because it was only
generally designed without paying attention to delegation and different database systems.
It is just a monolithic class doing to much itself, with long methods looking more like their
procedural counterparts.

As this class was not written by myself, refactoring it should also improve my knowledge
of this class, its functionality and intention. I don’t know how this class would have looked
like if I had written it myself but I have to admit that other classes of the framework are
also in urgent need of refactoring.

3.3 Anticipated Problems

Creating a stub for this class which represents a database is just to much work to be
sensible, therefore I use the available database for testing the class while refactoring it.
As this class has published its interface to be usable with the Java Remote Method
Invocation facility, it is quite bound to that interface. But as it is only used within the
framework, refactoring it is possible by modifying all references to the interface as well.

36 CHAPTER 3. EXAMPLE

3.4 Doing the Refactoring

3.4.1 Testing

Because not a single test exists for the class, they have to be written from scratch. I
incrementally write the tests as I move through the class. Each method I intend to refactor
has to get its tests running first. Only after that I start refactoring the method.

Going that way, as [Fowler| recommends it as well, spares many hours of bug searching
and debugging. And because with each run of the tests all hitherto refactored methods
are tested as well, a bug introduced anywhere would immediately show up. Because of
the distinct, small testing methods and appropriate reporting, it is very easy to spot the
bugs, that could have only been introduced in the last step done.

I don’t know and I really don’t want to know how many hours I would have spend bug
searching and debugging without the tests. Writing those tests even told me a lot about
the code I was actually going to test. How it worked, which dependencies are hidden in
its depths, which assertions must be kept and so on.

One problem that shows up while testing is the time it takes to connect to the remote
database and to execute the statements there. A local database would have helped a lot
but this is not possible. The time the tests take to run increases from 3 test in 4 seconds
to 11 tests in 32 seconds. When my Internet connection is perturbed, it takes even longer
(more that 200 seconds) to run the tests.

3.4.2 Log-file and Caring about Initialization

While refactoring the class I write a log file (see A.1, p.47) depicting my activities, the
refactorings I apply, the tests I write and run and my thoughts about this work in progress.
Together with the resources (starting file, various states in between and resulting files)
supplied at [Refactoring, Hunger| the refactoring can be reconstructed. In the following I
will excerpt the parts of the log which contain the most interesting information.

I start with getting accustomed with the testing framework JUnit [Gamma, JUnit]
which is very easy to use. But first I have to solve two problems there. The first is the
problem of killing the JVM when doing a hard System.exit () within the database server
when encountering a error condition (e.g. no connection to the database). Doing so the
testing framework is also killed because it runs in the containment of the JVM as well. So
I just comment out the System.exit(0) code and throw Exceptions instead.

The second problem is the obstruction of the output of the testing framework by the
tons of debugging output the database server produces. Therefore I have to extend the
testing framework to have it writing its output to a file which can be separately but
continously displayed.

After doing this I start writing the first test which deals with getting instances of the
database server. As there are two methods instantiating the server either as stand-alone
RMI-bound version or as an version integrated in the current JVM, I have to generalize
the initialization. The testing framework can only use the integrated instance method as
I don’t want to blow the testing up using RMI connections.

As the testing framework is based on providing a context for each test method that is
initialized just before calling the test method by setUp() and cleared after running the
test method by tearDown(), I have to enable the database server to shutdown without
exiting the virtual machine.

3.4. DOING THE REFACTORING 37

The first tests I write, test this behavior and after they run correctly I can provide the
context the other test methods need without having to worry about getting and loosing
instance of the database server (see A.1, p.47).

A test method for this looks like the following:

public void testdoBindUnbind() {
dbserver=null;
try{
dbserver=new DBServerImpl();
dbserver.unbind();

assert ("unbound ", !dbserver.isBound());
assert ("bind successful", dbserver.bindServer());
assert("bound ", dbserver.isBound());

try {
Object o=Naming.lookup(dbserver.getBindName()) ;
assert ("correctly bound (DBServer)",o instanceof DBServer);
assert("correctly bound (Maintenance) ",o instanceof Maintenance);
assert("ping time <100 ",
System.currentTimeMillis()-((Maintenance)o) .ping()<100);
} catch(Exception e) {
fail ("Exception was thrown '"+e);
}
} catch(Exception e) {
fail("Exception was thrown "+e);

}
finally {

dbserver.finalize();

assert (" unbound ", !'dbserver.isBound());
}

¥

Afterwards I first extract a method ExtractMethod for getting a Property as an Integer
value, and then I move it MoveMethod where it belonges - to the class emw.metaworks.util.
RuntimeProperties. The new call replaces all duplicate code that mimicked the same functional-
ity. (see A.1, p.47)

3.4.3 Idea of DatabaseFormat

When T look first at the class it looks very bad - few long methods, lots of code that was commented
out, lots of duplicate code and so on.

To get a better overview over the code that really mattered, I remove almost all commented
out code (!409 lines) to an extra file called DBServerImpl. java.removed. That reduces the file
size to 1000 lines (with empty lines) (see A.1, p.48)).

Then I ponder the general structure of the class and which design will be fitting to refactor
into its direction:

thinking as the different databases differ in their syntax, I think about creating a DatabaseFormat
class, which gets the responsibility of formating the raw query/update data to
correct SQL sentences

thinking because the syntax order differs as well not only the symbols, the formation of a
template method with appropriate calls to the DatabaseFormat is not possible

thinking the functionality of the class shall cover: SQL terminal symbol names, formation
of setences of the structured query language and additional formating of String
and Date objects

38 CHAPTER 3. EXAMPLE

thinking either the complete functionality of querying the Kriterium or Data objects to
form SQL sentences must be moved to the DatabaseFormat or its methods are
only called with the extracted data

(see A.1, p.48)

With those thoughts in mind I start refactoring the basic methods of the database server, which
are all about creating SQL statements of their parameters, executing them in the database and
converting the results to sensible return values.

3.4.4 More Testing

For testing the methods I need a test table which can easily be created, filled, emptied and destroyed
with each (test-) context update. I use the worn out table of an employee with some personal data
and his manager (see A.1, p.49).

I start writing tests for creating and dropping the table, and afterwards for the creation of the
necessary metadata (DataDescriptor), Kriterium, and Data objects, which are needed to test
the methods of the database server to fill, query and delete data in the database.

After those tests, which don’t directly test methods of the database server but are rather helper
methods to create necessary test data, run finem, they are converted to their real purpose - being
helper methods. This is accomplished by extracting the code that focuses on a single task (e.g.
creating the table). But all the assertions which must be fulfilled when executing the functionality
are kept alive in the helper methods (see A.1, p.49).

Those helper methods put the data they create in global variables and returne it , so that they
can easily be used to compose real test methods.

public void testInsertQueryAndDelete() {
createMetadata(); // helper
createData(); // helper
createKriterium(); // helper

try {
createTable(); // helper
insertData(); // helper
queryData(kriterium); // helper
assertNotNull (query_data); // real test
assert ("1 row", query_data.length==1);
assert("insert vs. result",insert_data[0].equalsData(query_data[0]));

}
finally{

dropTable(); // helper
}

}

Meanwhile I think of the following:
thinking writing tests consumes a lot of time but one learns much about the own code (in
particular its shortcomings), the testing framework and in this case the database

3.4.5 Refactoring Outside The Database Server

T also refactor some other classes of the framework a little bit as it seems sensible to do so. The
Data class gets methods to set and get attribute values not only by id but also by name, which is
by now accomplished by calling a method on DataDescriptor (see A.1, p.49).

Data data=new Data("employee");
data.setAttribute(data.getDescriptor() .getAttributeId("name"),"Michael");

3.4. DOING THE REFACTORING 39

is now done by:

data.setAttribute("name","Michael");

The Kriterium class is also equipped with a new method that allows it to set an expression in
one step rather that in two.

Kriterium krit=new Kriterium("employee");

// which is possible due to the previous step
krit.setAttribute("name","Michael");
krit.setOperatorId("name",Kriterium.LIKE);

is now domne by:
krit.setComparision("name" ,Kriterium.LIKE,"Michael");

This not only increases the readability of the code but also reduces the amount of not duplicate
but similar code.

3.4.6 First Methods Extracted To DatabaseFormat

The tests soon point me to an bug that has been hiding in the database server for a long time.
It does not correctly format boolean values for interpretation by the progress database. The bug
shows up when I run the test method for inserting a value into the employee table. Removing it
would have been a matter of seconds if I only have the documentation for progress at hand. So it
takes me some minutes of guessing and trying.

As one colleague of mine has already started (but unfortunately only started) to refactor the
database server class, the query () method is accompanied by the extracted methodscreateFrom(),
createJoin(), createWhere() and createQuery(). Those methods provide a good starting
point for refactoring. Like every time I start writing and debugging the test code and afterwards
I look at the methods for possible refactorings.

I already thought about creating a distinct class Extract Class for doing all database related
formating. This class is created now as emw.metaworks.DatabaseFormat. At first all calls to this
class are done with static class methods, as this spares me pondering instantiation issues. (see A.1,
p-50)

One thing I do everywhere is replacing String concatenations with StringBuffer operations
as this spares lots of String creations. One other thing is extracting methods for concatenating
strings to StringBuffers with correct processing of null values and necessary delimeters. Those
methods - andExpressions() and concatenateExpressions() - are moved to DatabaseFormat.

A basic functionality that does belong to DatabaseFormat is formatting objects for use with the
database. The functionality fulfilled by the ObjectToOracle class and some hacks are transformed
to a formatObject () method now belonging to DatabaseFormat (Extract Method, Move Method).
After all of the former code is transformed to use the new method, the resulting methods already
look much cleaner to me (see A.1, p.50) because this eliminates a lot of duplicate code.

Object attributValue = data.getAttribute(j);

String valuesString=0bjectToOracle.getOra7String(attributValue);

if (valuesString.startsWith("to_date"))
valuesString="date(’"+df2.format ((Date)attributValue)+"’)";

if (attributValue!=null && dd.getConstraint(j).getType()==Types.BIT)
valuesString=(((Boolean)attributValue) .booleanValue())?"yes":"no";

is now written as:

valuesString=DatabaseFormat.formatObject (data.getAttribute(j));

40 CHAPTER 3. EXAMPLE

with:
class DatabaseFormat {
public static String formatObject(Object obj) {
if (obj == null) return "NULL";

if (obj instanceof Boolean)
return (((Boolean)obj).booleanValue())?"yes":"no";

if (obj instanceof java.util.Date || obj instanceof java.sql.Date) {
return "date(’"+dateFormat.format (obj)+"’)";

if (obj instanceof java.lang.String) {
return "o ||+ Obj + non ;

}

return obj.toString();

3.4.7 Switching off a Switch (Statement)

Another very heavy piece of code is a switch statement in createWhere() that is 60 lines long
and duplicates code in every case statement. This one is extracted (see A.1, p.50) into an own
method named getExpression() which in turn delegates its work to formatObject () and some
other helper methods. An excerpt of the relating code is appended (see A.1, p.56).

After refactoring those methods, they are moved to DatabaseFormat as they only represent
formatting issues and nothing related to the interaction with the database.

The query() method then uses all resulting strings of its extracted methods to create the
complete query and execute it on the database (see A.1, p.51).

One heavy benefit that has already gained me a revenue is eliminating duplicate code. When
I find errors that reside in already refactored code, I only have to correct them in one place and
not in eight or ten as before.

3.4.8 A Bright Moment

At this point I am doing testing and refactoring and have quite a lot of good results and fun as
well (If everything runs OK and things get better quite easily it should be fun to continue). But
now I come across a problem that should have required more thinking if done in a conventional
way. Fortunately I don’t do it the conventional way. To catch the thoughts that possess my mind
at that moment I think its best to quote from my own log (see A.1, p.52).

refactoring I am even more surprised, when pondering about problems arising from the tem-
porary local variable (boolean array) isPartOfQuery for the elements of the
Kriterium object, I realized that applying the Replace Temp with Query refac-
toring could not only be helpful but also allows to restructure the createSelect ()
method as this is the method producing the boolean array.

refactoring So I extract the code needed for isPart0fQuery () from createSelect(). Then
I have a very strange moment when things begin to fall in place and the code
really communicates to me that this is the right thing to do. Suddenly I am able
to cut the createSelect () method to its basic task, creating a part of a SQL
select expression for the fields of the Kriterium object that have to be retrieved
from the database. The work of determining which are those fields, doesn’t have
to do anything with this task but is mingled before in createSelect().

refactoring In the end I have two methods which are both well structured, small and which
concentrate on their basic tasks.

3.4. DOING THE REFACTORING 41

thinking I think that is the real gain from refactoring. On the way to restructure your
code you apply a refactoring and this starts a chain reaction which results in
a - not previously anticipated but convincingly superb - code that does still all
the things it should but is much more focused and clear. Not mentioning the
removal of lots of duplicate code by working through it. I don’t think one would
come to this conclusion that easily when trying to imagine it with an upfront
design.

testing and all test still run fine ;)

thinking I must say when experiencing this moment of clarity, I have to agree with MARTIN
FOWLER who states that refactoring is a lot of fun. In my humble opinion
refactoring has even more gains than programming from scratch . You not only
take a bad thing and turn it into a high quality piece of code without much
thinking but you can also learn much more about the system in general and in
detail, about programming style and design and about the inhoerent structure
which is needed to solve a problem, but which is usually disguised by many lines
of bad code.

The code mentioned above can also be found in the appendix (see A.2, p.57).

3.4.9 Reaching The Limits

Unfortunately I have not enough time (refactoring this class took me about 25 hours) to refactor
everything I want. When working on the query () method, I realize that a change in the metadata
structure of the framework, would have allowed me to split the remaining query() method into
even smaller pieces. As I later determine this change would have had a impact on the updating
method as well. But because this refactoring will have quite dramatic consequences for the whole
framework I only note the fact and continue. I think refactoring is also about when to stop doing
it (see A.1, p.52).

The methods that follow are quite easily to refactor as I have already laid the foundation for
it. I extract the code that creates the SQL statements used to interact with the database to own
methods which are moved to DatabaseFormat after clearing them up. Of course I continue writing
tests and running them until they succeeded.

When I ponder about refactoring the update () method I find a failure in the design of the
approach of distinguishing between update and insert operations on the database. By now only
data that has been read from the database is used to update, newly created data is just inserted.
But rethinking the approach does not show up an easy solution for this problem. Either newly
created data can be used to update existing data or read data could have been removed in the
meantime requiring an insert operation to recreate it. Therefore the most convenient method
to detect the correct mode of operations would be to check the database before deciding on the
operation. But this will require far to much time and effort to be useful. ...

After finishing the update() method and doing some clean-up at the end of the class I am
happy to see that the refactored class looks much better than its predecessor.

3.4.10 Final Moves

The final refactorings I make, are to change DatabaseFormat methods from static ones to normal
instance methods. By adding a static getInstance() that is able to return single instances of different
subclasses of DatabaseFormat I create an access point to the class. Two of those subclasses are
created. One for the Progress DBMS the other for Oracle that provide the different syntaxes needed
for producing correct SQL statements for those databases. They just overwrite those methods of
DatabaseFormat that have to produce different results (see A.3, p.59).

The database server now uses a parameter supplied in the configuration file to determine
which database it is connected to and gets the according instance of DatabaseFormat by using the
getInstance() method.

EXAMPLE

CHAPTER 3.

42

furns (123l pioTIasn ‘Eled BIEp A UAA1 1S 21 ep d [3 ea o

BuLns C(1ealqo:lqoiioalqol e Io 4|

SULDS LI TIAL
IBULIO J21e (0D L 1EULIO J ol 8 PO

e ULI0 2 [oe 10

FUINS (133000 P10~ Iasn “E1B: E1Ep IUATIAL E1S 31 P d A1 EA I Ie|
BuLng (10300 (qo)1530qiol BILIO [

BUINS: A LI TIAS
1RIILIO J218 (0D [1PTILIC J o118 P

12 UL10.]5521501J

Iapm gaunng

[[ueafooq @ {INII=01IE Ik 1A JO 11 ed 510

UG ©(NIIEIIH I 23[A5 31 E3 I

fuIns (12300 pro~Iasn “E1E(] E1EP)IUANA1 151133 U3l BRI
FULOY © (IGO0 AFSE VI F I I IPS 2T I AT
Iajngauing : [101diasadeedpp 19alqo projuots s aldyIpioal ea i)
Autng c(12alqo:prod “Sunng e e1ap d)l UaTIa) 815 3133 (21 B3 106
Bmng (AU et RUINS WO I] BUINg 13728 iIatiD a1 ealde)
furng (Io1diIoe ag el e ppuIe R s 10|

furng C(AUIngpay RS AT el RIS qp AU ER P AT B0 21 R 106
fuing :(13a0qo:fqo uriolelado)uorssaIdeTlase)

FULNS (13algo:lqo Juriolelado “SUTnS pariuoissadaglaia)
FUINS (TN I3 1AL A1 Bl I

AULNE (UL Io1elado)[aq eTIo1elIado1ade)

AUTDS (123000 [qo)ursa 11 e o 1o

quing C(12a0qo:IqoiaqITI e o I

A0S (U 01 IA3d0)N 3 I3 AL BLLIO T4

(Burng: g idsa "3 1eduo s Iapm AU T Idda)suo1s s aldagl eato)
Iapmgauing | furng: g adea Tajngiurng T Idea)suots s a1deIp el
Aurng (1030q0:0) SIS [[RN10 e

ueafooq :(3uriolerado ol eradg aanizo dey

dutng c(13a0qo:Mqonsalqoleurio e

BUINS (1011128 A eI PR Iuo 1131 3 10

1eILIo Jaseqele(: (BULNS: sUIRU)adUPIS U185

=

JPULIC J21e (0D L1 1PULIC J3)e PO
B[qeIYSeH:S 3DULIS UL
BULNSEANTY AD

BULNS: LISO)

FULIS: I LI TIA

FULNS: LHIS NI

FuLns: 11V adna

BuLnS: TATHMY

BULNSINOY Y

SuLng: 1o I1ISo

TERALAOTOSEGETENT

\\\\

JELLIO 93 EQE1EP

Proa (1unadilo Jurio jua ep did)

Fuot : (EuTde)

UEAO0] © (JILMOPING S|

FUINS ©(AUIIS: 3 EXIND T334

[l333lfqo : (1280qopro~Iasn ‘[|eye ereqdialepdng
12alqo : (108lqoiploTIasn “eled: E1Ep)l ep dng
UEA00q [VeI EIEp EpIoAddnad)

[I[lx2alqo : (ueaooqisiimol Aurng Alandiianbe)
PIOA © {J3IUTELS UL

PIoA © (J103UU0 3 TpD

proa : (jpurqund)

PIo4 - (JRZITer)

ueajooq | ([J13afgo prod [Burng auren el d)[¥a13]3p S|
DI0A © (TEI[Q0 q:1TTIIO JTIHIIO 30 PO

ueagooq : (12alqo piod ‘SULS AUEN E1aW d)213] 2P @)
[lered : (wnriagnrygangtianbae)

101234 [(UES[00 QA1 EIRRUEL D3 Bl ‘1351[MS N 185 I “TWNTIA1 I 1IIN) el B anATI1a 1)
IUAMALEIS | (JIUATIA 1S 185

UOTI2AUUO D | (JUUO 2135

a[qEIs el | ()3101d1I032 a1 EL123

PloA ©{A[qeas eH:)2 101 d1I32 31138

UEI00Y : (J123UUO P

AUTng (JAUIENpUT 7133

UEIO0Y : ()13 I35 P

UEIOOY (JPUNO F519)

UEA[00 ;[JRZI[ENTURY]

(1w Iaa 135 g 0@

Proa : ([15unns:sEie)ureid

Tduifiaales 4 : (JeoURISUNLIEY

UEA[00 [IZI[EUL}Q
UEI[O0 QIO 370p<)
UG AU EN P TTIA
110 d)

UEAOO PUNLE F914)
1UT BYBPTHBTLLEY
JUTITEM ™12 2TITIO 3¢
UL 231113171 03UT0 34
uea[ooq:ed07)

UOTIIAUUO 3 U 3

JAUWLI2AISS (I 2S5 LIS
[dwpsatesgd ._

|
<~

(13200 @ (1280qo plo~1asn [eyec]: e3ep)alep dnd

NG (FUILE A ENINDP I TR

[I[22alqo : (ueaooq:1sIpmo 1 ‘Fus A lanb K ianbe)

ueaooq :{[J12alqo:pio ‘[|3urng s e[Y2132 p @]

uearooq (12300 p1o BUNS AUIE) 31 3] 30

[Je1ed : (mnrranrgiiianba

2[qEIe el | ()2 I101d1I02 3310 EL123

P10 (A0 EIS BRI 2 1011138 AT1 354

WEALLAY MIWHINTIIL SOLY IS
«33EJIAUL

IATSA [

ign

ing Desi

UML-Diagram of Result

Figure 3.1

3.5. BENEFITS AND DISADVANTAGES 43

The resulting structure is shown at the UML diagram of the concerned classes (see 3.1, p.42),
which is created using JRefactory (see 2.3.2, p.28) on the package and by hiding the unwanted
classes under the margin.

3.5 What were the Benefits and Disadvantages of Refactor-
ing the Class

3.5.1 Benefits

I must admit that refactoring the database server class highly increased the quality of the code. It
not only makes the code more readable but also allowes it to communicate its purpose and intention
without the use of commenting. That was achieved by choosing explaining names for methods and
variables and by restructuring the class from containing large methods which did everything to
small specialized methods which call functionality they don’t provide themselves. This can be seen
at the following example which presents the final version of the update() method. (I don’t dare
to show the first version I only want to mention that it covered 230 lines.)

protected Object update(Data data,0Object user_oid) throws Exception {
if (data==null) return null;
Statement updateStmt=null;
ResultSet updateRset = null;
try {
updateStmt = getStatement();
String query = null;
Object oid = data.get0ids();

if (data.wasRead()) {
query=databaseFormat.createUpdateStatement (data,user_oid) ;
updateStmt . executeUpdate (query) ;

Yelse {

if (!supplyOids(data)) return null;
oid=data.get0ids();
query=databaseFormat.createInsertStatement (data, user_oid);
int row = updateStmt.executeUpdate(query);
if (row == Q) return null;
}
return oid;
}
finally {
updateStmt.close();
}
}

Other benefits I experience when refactoring the class are a better understanding of its intention
and functionality and of the database behind it. I learn a great deal about unit testing. Writing
tests can save very much time when bugs are introduced during the coding. I also experience the
feeling how reassuring it is when running the tests again and again without having them reporting
errors.

Another very time saving result of refactoring the mess that the class presented to me at the
first time, is the ability to correct errors - when found - in seconds rather than in minutes or
hours. The elimination of the duplicate code that was heavily present in the class before limits the
necessary changes to a single place.

As T now know and have understood the refactorings listed in the book of MARTIN FOWLER
[Fowler], it is never complicated to find a refactoring that allows me to restructure the present code.

44 CHAPTER 3. EXAMPLE

When thinking about the refactorings and using them, they just became tools as other techniques
of software engineering like design patterns. Therefore I think although the reading of the catalog
of refactorings in the book was not always thrilling it sharpens one’s senses for when to apply which
refactoring.

The main result of refactoring the example apart from my personal experiences and the time
issues is the convincing design that appears incrementally while working through the class. Instead
of having one bulky class that grabs all activity for itself, it now delegates all formatting issues
to another class and some other functionality to the classes that are responsible. The database
server class now only deals with calling the formatting methods, doing the database queries and
extracting and returning the results. This design is very robust but also open to changes as the
functionality is separated in small pieces that interact with each other.

3.5.2 Disadvantages

One burden that refactoring always bears is the testing effort that is the base for doing a refactoring.
When code has to be refactored for which no tests exist, it take a lot of time to create all tests that
are necessary because a running test is the prerequisite for refactoring a method. If the tests for all
methods of a class to be refactored are written at once, the expenditure will be to big. Therefore
I take the approach of only writing tests for the method I am going to refactor and the methods it
calls (if necessary).

So I get an iterative cycle of writing tests and making them run and only after that I start
refactoring. This also provides me with more satisfaction as changing the focus of my work helps
keeping an open eye for potential failures.

Another disadvantage of refactoring is that the whole process is quite alluring. You have to
force yourself to stop refactoring as it’s really fun and you see your code getting grown up. But I
think most projects limitations naturally put an end on your refactoring activities.

Unfortunately I was not able to do refactoring with a peer. I can imagine that it helps and
hinders as well. It is absolutely helpful if you are stuck in a problem or if you have lost the right
direction. And as I experienced sometimes, refactoring over some hours is also exhausting. A
peer can take the keyboard away from you and continue refactoring while you are able to let your
thoughts fly around a bit.

As I refactored a class that was implemented in the Java language, I only have 3 tools available
to support me with refactoring. Those tools support only a very limited number of refactorings
in different qualities. The different tools don’t integrate that easily as well. Xref for example
does support my own editor named emacs and allows me to rename, extract methods and modify
parameter lists. JRefactory only supports its own interface which is not that easy to handle but
allows the creation and removal of classes, moving classes and methods (at least theoretical) even
in the inheritance hierarchy, and renaming as well. The Intell] Renamer on the other hand has its
own interface but supports only moving classes and packages and renaming all symbols. Therefore
using all these refactorings would have required me to run the tools (who have different but long
startup times), according to the refactoring I want to apply.

Fortunately I only have to deal with one class without tampering its public interface. Therefore
all changes affected only that single class. So I was faster using the capabilities of my editor to
implement the refactorings. I had a problem running the Xref-Speller that was my own fault,
otherwise I would have used it because it easily integrates in my development environment.

Chapter 4

Summary and a Look Ahead

4.1 Summary

After dealing with refactoring for the time of writing this paper, I was convinced and convinced
myself that refactoring shall be seen as a technique which every programmer can and shall count
on. Not knowing of refactoring and not applying it to the code one has to work with, leads to a
considerable loss of quality.

That the design of software decays over time is a sad but fixed fact that can’t be easily ignored.
Ultimately the one who must maintain or extend the software system has to deal with the bad
design that evolved over the time. He will have problems understanding the code, extending or
debugging it when he is not supported by the code itself i.e. his antecedent programming colleague.

Because doing refactoring is not that hard, it should be done every time it is necessary. Al-
though the considerations about the time lost when refactoring may be pressing, the benefits gained
from code and design of higher quality more than compensate for the effort.

Fortunately refactoring doesn’t depend on a certain development process. It can be used con-
stantly during coding (or named otherwise in the other phases, e.g. redesign) without interrupting
the process. If it is steadily used, it even doesn’t add much effort to the coding because the tests
required already exist. Moving some code around is not a very hard work at all. Only documenting
the changes done may require more effort.

Although some development processes provide a better environment for refactoring as they are
also highly concentrated on developing high quality software in small steps ([UML+Patterns, Larman)],
[Beck,Xp]), refactoring shouldn’t be ruled out in other processes.

As T already stated, refactoring should be an often used tool in the toolbox of every programmer
much like design- or coding patterns. But not only the one who applies refactoring to the code
should know of the benefits it has. Every other person involved in the project (e.g. manager,
customer, consultant) should be aware that refactoring is an easy way to provide code of high
quality and has to be done without questioning.

In general it can be said that the positive effects of refactoring heavily outweighs the dis-
advantages which are reduced when refactoring is steadily used and the base for implementing
refactorings already exists. When the notion of saving time by refactoring first and extending the
functionality afterwards is incorporated in the thinking of the people the benefits will be always
notable.

4.2 Future Development

The future development should be directed to the reduction of the effort for implementing refac-
torings further. This can be done by tools which have the Smalltalk Refactory Browser as an
example. The half-automatic application of refactorings based on the parse tree of the code to be
refactored with restrictions and semantic checking rules is the step that has to be taken for other
programming languages than smalltalk as well. I think for everyone who does not extensively busy
himself with refactoring, the exhausting task of applying the individual refactorings can be a reason

45

46 CHAPTER 4. SUMMARY

not to do it. That reason will only fade away, when tools exist that make life easier by automating
much of the boring and error prone handwork.

Unfortunately by now none of the tools examined in this paper can catch up to the example
given by the Smalltalk Refactory Browser.

The next step of development is seen with cautious eye by many developers. Although it
seems possible to apply refactorings automatically if the rules and restrictions when and how to
implement the refactorings are specified carefully, the result of such work may be unsatisfying. The
decision when and where to refactor often does not only depend on the structure of the existing
code but has also to do with the limitations and the demands of the project and the intentions of
the programmer who is able to refactor in the direction of a certain goal. No tool can (at least
in the next years) replace the creative thinking and experience of a programmer who has worked
with good and bad code. He knows that an investment into keeping the quality of the produced
software high does not only satisfy the customer but supports everyone who has to deal with this
software in the future. Perhaps this will be even himself. ...

Appendix A

Refactoring Example

A.1 Refactoring Log

Legend:

testing
coding
refactoring

thinking

Unit Test
Source Changes to make the tests run, remove bugs etc.
Refactorings

saved states and thoughts

The log file written wile refactoring emw.metaworks.DBServerImpl:

testing
coding
testing

coding

refactoring
refactoring

coding
refactoring

coding

coding

coding
refactoring
coding

coding

coding

coding

refactoring

Unit Test testSetup for instantiating DBServerImpl
using finalize instead of shutdown as this does not exit the JVM via System.exit(0)
testGetInstance for getting instance of DBServerImpl

finalize also has to unbind server from RMI-Registry, as multiple instances without quitting
the virtual machine, occupying the same socket port

renamed bindString to bindName and making it a global variable

made port a global variable

bindString and port are used in finalize() to unbind the server

splitting method finalize() into two methods - disconnect() and unbind()

as DBServerImpl is designed for singleton use, a method to unInstance it is added to the
finalize method

for preventing finalize() to be called twice (a second time by the garbage collector) a finalized
state variable was introduced,

unbinding only if not called from a local VM, i.e. if it was not bound to a separate address
accessor for bindName was added
finalize() is extended to act differently on RMI-bound and local servers

due to the impossibility of removing an installed registry, the exception the createRegistry()
call creates is silently ignored

commenting out System.exit(0) as this causes the test environment to exit as well

new refactoring is to extract the methods needed for setting up the rmi binding from start-
Server() it is called bindServer()

as:

47

48 APPENDIX A. REFACTORING EXAMPLE

try {
port=new Integer (RuntimeProperties.u().getProperty("DB_PORT")).intValue();

} catch(Exception e) {}

is duplicated very often throughout the class, it is extracted to an own method, getProper-
tylnt

refactoring to catch the exception an default value must be supplied
testing Unit Test testGetPropertyInt is written and runs from the first run

coding bindServer() returns now a boolean value instead of using System.exit(0) when failures occur,
this boolean value is stored in the variable isBound

thinking state 2 saved

coding remove a lot of commented out and testXX() code (409 lines, of 1400) to a separate file
DBServerImpl.java.removed, to make the class more comprehensible

testing rerun tests (problems with reloading actual class files in the Swing Version, switching to text
version, test results should also be written to a file to not interfere with outputs from tested
class)

thinking state 3 saved

refactoring replace other uses for getPropertylnt in constructor, moved try clause to not longer watch
these lines

refactoring added failure warning for getPropertylnt

testing tests run, the testSetup and testGetInstance are commented out because they consume to
much time (connecting to db)

refactoring moved all initialization (e.g. reading properties file and setting variables according to prop-
erties) to method initialize(), to collect these things at one place

testing test getInstance broke, as bindName is now created regardless of, bound or not bound,
changing test to check to isBound flag

testing test commented in again ;)
refactoring as start Server does only contains delegation it is inlined into the constructor

refactoring looking at dbConnect reveals that the JDBC driver is looked up each time a connect try is
done, move it out of the loop

thinking considering dbConnect to return a Connection object instead of boolean result, but delayed
that decision

refactoring a test is added to check RMI stuff, binding and unbinding the server, checking if the correct
object was bound and performing a method call on it

refactoring moved getPropertylInt directly to RuntimeProperities
testing tests run correctly after adaption to moved reference

refactoring setDescriptors() and getDescriptors don’t require testing methods as they only delegate their
work

thinking as the different databases differ in their syntax, I think about creating a DatabaseFormat
class, which gets the responsibility of formating the raw query/update data to correct SQL
sentences

thinking because the syntax order differs as well not only the symbols, the formation of a template
method with appropriate calls to the DatabaseFormat is not possible

Al

thinking

thinking

testing
testing

testing

testing
thinking

testing
testing
testing

coding

testing
coding

coding

testing

refactoring

testing

testing

coding

testing
thinking

coding

testing

REFACTORING LOG 49

the class should cover, SQL terminal symbol names, formation of sentences of the structured
query language and additional formating of String and Date objects

either the complete functionality of querying the Kriterium or Data objects to form SQL
sentences is moved to the DatabaseFormat or its Methods are only called with the extracted
data

test for DBServerImpl.createFrom is created

an test table within the database is needed, the following format is used

Table employee:

id number(10) // primary key

name varchar(20)

birthday date

salary number(7,2)

age number (3)

skilled boolean

manager number(10) // foreign key to employee

getConn() is implemented for getting a valid connection to the database used by the Test-
Case; has to be removed later

a testCreateTable is created to create and drop a table

writing tests consumes a lot of time but one learns much about the own code (in particular
its shortcomings), the testing framework and in this case the database

testCreateTable succeeds
a test for creating a DataDescriptor for the testTable
a test for creating a Data object

added convenient methods for setting and querying data attributes with names rather than
only with id’s

test for creating a Kriterium object
added a method for setting the operator and the comparison value in Kriterium together

added methods for setting and getting operators by name (Kriterium) and for modification
check also by name (Data)

test runs

using ExtractMethod on the testCreateTable method to split the creation and removal of
the table into two separate entities

a test for inserting, querying and remove a row into the table is created

as creating a connection to the database within setUp and closing it within tearDown is too
costly (regarding the time consumed), a method getStatement is added that provides a valid
statement for the database

found an error in DBServerImpl regarding the storing of boolean values in the database,
corrected, tests run

creating a test queryData();

inserting and deleting don’t require the database name, otherwise querying does, this pro-
duced an error when running the test

added database name e-db to createDescriptor

all tests are now composed of small creation methods

50

thinking

coding

coding

thinking

thinking
thinking

coding

thinking
testing
testing
testing

testing
refactoring
refactoring
refactoring
testing
testing
testing

testing

refactoring

testing
coding
refactoring

refactoring

coding

testing
refactoring
refactoring

coding

APPENDIX A. REFACTORING EXAMPLE

there are problems creating a database-qualified table within the restrictions of the database,
but a non qualified table produces errors when querying

correction of the error when querying

as assertEquals does not cover the comparison of two Data objects, a method named equals-
Data is added to the Data class

creating a Data with java.lang.Float is converted to java.lang.Double when stored in the
Database even with type float

type FLOAT in Progress is mapped to Double in java

a NULL value written in the database is returned as an 0 value when using a integer, this
problem seems quite serious as all values seem to be converted to basic values of the Object
Types,

problem solved using ResultSet.wasNull() in the DBServerImpl query() method to test for
null values after retrieving the objects

perhaps this must be moved to the DatabaseFormat class
wrote test method for createFrom()
test failed, because a space was missing, corrected the expectation an rerun successfully

added second metadata (foreign key reference employee.manager -; employee.id) for more
testing of createFrom

after some error searching the metadata creation and tests run

removed some duplicate Code from createFrom, and replaced String with StringBuffer
an emw.metaworks.server.DatabaseFormat class is created

createFrom is moved there

testCreateFrom is adapted to the new source of the method, testing is successful
testCreateWhere missed its first run by some spaces and missing parentheses

added second Kriterium to be tested with createWhere

found bug representing boolean values in the database query, but as this one is deeply buried
in the code of the database servers createWhere method, it seems as if refactoring has to go
first

as DBServerImpl relies on ObjectToOracle for formatting Object values, the functionality
that resides there has to be moved to the DatabaseFormat class, the references in the DB-
ServerImpl has to be modified as well

test still run after moving ObjectToOracle.getOra7String() to DatabaseFormat;
modified the moved method to correctly respond to boolean values
replaced now incorrect name getOra7String() to formatObject()

I would like to overload formatObject for formating the different types but the method is
called only with Object objects and not with type specific object

by the way removed a hack associated with wrong formatting of date objects regarding to
progress database, as well as the hard wired formatting of boolean values

test still run fine
extracted huge switch statement into new method getExpression()
extracted methods for formating NULL values, like and begin expressions to DatabaseFormat

introduced method getOperatorLabel in DatabaseFormat

Al

coding

testing
thinking
thinking
testing
thinking

coding

testing

testing

refactoring

testing
thinking

refactoring

testing

thinking

refactoring

refactoring

thinking
refactoring

testing

testing

testing

refactoring

REFACTORING LOG o1

removed 43 lines of code from the switch statement and replaced it with just one line of
code:

default:
return DatabaseFormat.getOperatorLabel (operator) +
DatabaseFormat.formatObject (obj);

after clearing some spaces and cases (upcase in this case) the tests run fine
saved state 5 of DBServerImpl.java

next method to be tampered with is DBServerImpl.createJoin()
testCreated for createJoin

as the test encounters problems with not set databases (e.g. null.employee.manager =
null.manager.id) i write a method encapsulating the creation of such structures which pro-
duces correct results

first some cosmetics, ordering code and using Stringbuffer instead of String

the tests showed up an error I produced when I introduced StringBuffer which did not show
up at testCreateJoin() but rather at testInsertQueryAndDelete()

tests run fine now

as createJoin has useless parameters they should be removed createJoin(int attributeCount,
DataDescriptor dd, Vector fromTableVector) to createJoin(DataDescriptor dd)

after adapting to the new parameter list the tests run correctly

the next method to be looked at createQuery is small enough and well structured, it doesn’t
have to be refactored, but rather moved to DatabaseFormat

as the query() method that uses all the previously refactored methods is next, I think it is
a good time to move the appropriate methods to DatabaseFormat (createWhere(), getEx-
pression(), createQualifiedField(), createJoin(), createQuery()

after moving the methods and adapting the references all test still run fine and even faster
as no longer an instance of DBServerImpl is required to perform the tests which does auto-
matically connect to the database

DBServerImpl shrank by another 100 lines of code

the next method to be refactored is DBServerImpl.query() which is a quite heavy one and
which yearns for refactoring

extracted all code regarding the creation of the select statement from the query() method
into the createSelect() method

saved state 6
refactored the createSelect() method

when refactoring I introduced the error of using the String ”table” instead of the variable
table, the test failed, and because the method was already refactored I only had to change
the code in one place

added some more test data and found another bug regarding the not equals operator in
Progress, corrected it as it only appears once now in DatabaseFormat.getOperatorLabel,
now all tests run again

added more test data for querying referenced tables by using the ”Manager” metadata

move the test of an available database statement to an extracted method named getState-
ment()

52

thinking

refactoring

refactoring

testing

refactoring

refactoring

refactoring

thinking

testing

thinking

thinking
refactoring
testing

refactoring

thinking

coding

testing

APPENDIX A. REFACTORING EXAMPLE

the notion of the external definition if a table has a change date field, should be internalized
into the appropriate metadata structure, but not now :)

RIEI

as the code structure (object!=null) ? object.toString():””; appears much to often, it is
replaced with calls to the method notNullString(object)

it is moved together with andExpressions() to DatabaseFormat as it is a kind of formatting
and its more often used there, both methods are introduced at all necessary places

tests are still ok (I'm astonished ;)

I am even more surprised, when pondering about problems arising from the temporary local
variable (boolean array) isPartOfQuery for the elements of the Kriterium object, I realized
that applying the Replace Temp with Query (120) refactoring could not only be helpful but
also allowed it to restructure the createSelect method as it is the method producing the
boolean array.

So I extracted the code needed for isPartOfQuery() from createSelect() !! code and had a
very strange moment when things began to fall in place and the code really communicated
me that this was the right thing to do. Suddenly I was able to cut the createSelect() method
to its basic task, creating a select part for the fields of the Kriterium object that have to be
retrieved from the database. The work of determining which are those fields, doesn’t have
to do anything with this task but was mingled before in createSelect().

In the end I had two methods which were well structured, small and which concentrated on
their basic task.

I think that is the real gain from refactoring. On the way to restructure your code you apply
a refactoring and that starts a chain reaction which results in a not previously anticipated
but convincingly superb code, that does still all the things it should but is much more focused
and clear. Not mentioning the removal of tons of duplicate code by working through it. I
don’t think one would come to this conclusion that easily when trying to imagine it as an
upfront design.

and all test still run fine ;)

I must say when experiencing this moment of clarity, I have to agree with MARTIN FOWLER
who states that refactoring is a lot of fun. In my humble opinion refactoring has even more
gains that programming from scratch, because not only you take a bad thing and turn it into
a high quality piece of code without much thinking about but also you can learn much more
about the system in general and in detail, about programming style and design and about
the inhoerent structure which is needed to solve a problem, but which is ususally disguised
by many lines of bad code.

saved state 7
extracted the retrieval of the Data objects to an own method retrieveData()
tests run without problems

although I'd like to refactor the query() method further, I stop here because further refac-
toring would have to introduce change date aware metadate and to deal with multiple return
types for each part of the select statement which is created separately. As I can’t predict
if those parts are concatenated everytime in the same way without changes, I also don’t
add a method for creating the whole select statement string at once by calling the creation
methods itself.

now I’'m done with the first half of the DBServerImpl class which lost almost one third of its
code.

changed createQualifiedField to createQualifiedName covering now all possible combination
of valid parameters to create a qualified reference symbol.

test confirmed

Al

refactoring

testing

coding
testing
refactoring
testing
testing
refactoring

thinking
thinking
testing

testing

refactoring
refactoring
refactoring
testing
thinking

refactoring

thinking

testing

thinking

thinking

testing

testing

testing

refactoring

REFACTORING LOG 53

refactored delete by using Extract Method to move a part of the code into createDeleteS-
tatement wich can be transferred to DatabaseFormat, and some of it into doCommit() which
deals with committing the changes made be delete() and deleteAll()

I’d like to add a test for tables with multiple oid’s, but this would require to get the Data
class to make the oid values contained available using one method

changed the Data class

modified the tests to work with two oids and it worked

used MoveMethod to move createDeleteStatement to DatabaseFormat
tests failed due to a wrong String constant in DatabaseFormat

tests run

deleteAll skipped as it didn’t require refactoring

fast forward to line 597 of 975, as the methods betwenn were already refactored, saved state
8

next method to be refactored is a query method that executes a SQL string directly and
returns the results as Object[][]

first writing test

the old problem of java.util.Date stored and java.sql.Date retrieved showed up again, now
I set the Date values as instances of java.sql.Date but this problem is in need of further
evalutation

refactoring query() by introducing getStatement/()

replaced variable col_count by column_count

changed Vector of Vector to Vector of Object[] as this lowers the conversion efforts
tests run fine

thought about using ExtractMethod to extract the functionality of converting a Vector of
Arrays to an own method but as this is not that much code and as it is not duplicated by
now I leave it in place

removed empty method initTableDescriptor() as it is used nowhere

next method is updateData which is also quite large and the last method of such importance
and size, its now approximately 210 line long :(

a test for the inserting functionality of update() ran all the time by now and it is expanded
now to run a second time to update the values

the date object seems to have a failure in design, updating data values occurs only on Data
values that were read from the database, not for newly created ones

it would be better to distinguish the methods of updating and inserting or doing a previous
test if the row of data already exists within the database (which costs a lot of time btw)

actually I'm marking the data values to be updated (instead of being inserted as coming from
the database), and I have to supply a nonexisting (i.e. null) Date value to its constructor,
meaning there is no last_change field in the database

modified in that way that the test does first insertion of the data values and second updating
with changed values, which are subsequently read for verification from the database

test runs now

added method getExpression (field,operator,object) to DatabaseFormat as this is used every-
where instead of getExpression(operator, object)

54

refactoring

refactoring

refactoring
testing
refactoring
testing
testing

refactoring

testing
thinking
refactoring
testing
refactoring
testing
refactoring
testing

refactoring

testing

coding

coding

refactoring
testing

refactoring

thinking
thinking

thinking

refactoring

APPENDIX A. REFACTORING EXAMPLE

introduced getStatement() into update()

moved the code within the outer for loop of update into an extracted method of up-
date(Data,user_oid)

extracted a method createUpdateStatement() from the single update() method

tests run

replaced weird String adding constructions with calls to concatExpressions(getExpression())
tests threw an exception as I missed the SET statement within the query, corrected

tests run

extracted method createOidExpression() from createUpdateStatement() which resembles the
code used in delete()

tests run

btw. multiple oids work fine now as well

MoveMethod for createUpdateStatement and createOidExpression to DatabaseFormat
tests run fine ;)

replaced duplicate code in DatabaseFormat.delete() with createOidExpression()

tests ok

Extracted Method createlnsertStatement() from the second part of update()

tests ok

Extracted Method supplyOid() for inserting a new, valid oid if it is not exitent. As this
method, i.e. the way new oids are created, is project specific, it should be overwritten as
needed.

tests run

introduced the concatExpressions() instead of String concatenation in createlnsertState-
ment()

added method getOidArray to the class Data as this covers most of the ugly workarounds
which were introduced by Data.getOids()

Moved Method createlnsertStatement() to DatabaseFormat to sit around with its siblings
tests still run

commented out method DBServerImpl.getLfdNr() as this is specific to a project (much like
supplyOids), which should be overwritten by an subclass of DBServerImpl. Therefore it
should be marked abstract.

I am done with the DBServerImpl class !!

the class shrank from 1235 loc (DBServerImpl.java.0) to 648 loc, with 278 loc moved to the
class DatabaseFormat, and produced 220 lines of this report ;)

ideas for refactoring report, unfortunately they appeared to late to me to be used in a sensible
way: timestamps, perhaps durations of the steps, number and duration of the tests (I must
acknowledge, that I've written not enough tests but rather modified the testfile sometimes
for another type of test (e.g. 2 oid’s instead of one). My 10 tests run now in less thant 36
seconds which is quite long :(but due to the database connection inevitable.

TODO: as the extracted methods evolved during the refactoring and were not available from
the beginning the class has to be reexamined which pieces of code would benefit from the
application of the extracted methods (e.g. to remove code duplication)

Al

coding

refactoring

coding

coding

testing

refactoring

coding

coding

testing
thinking

refactoring

refactoring

testing

refactoring

refactoring

testing
thinking

thinking

testing

thinking

REFACTORING LOG 55

added DatabaseFormat.createQualifiedName() and DatabaseFormat.concatExpressions() to
DBServerImpl.createSelect()

change static calls in DatabaseFormat into public method class to a singleton pattern in-
stance of this class, which should be overwritten for the database specific formatting (e.g.
ProgressFormat and OracleFormat)

added getInstance() to DatabaseFormat which returns a single instance

enhanced getInstance to work with class names to return also those classes which are de-
scendants of DatabaseFormat, internally the successfully created instances are stored within
a hashtable

added tests for getInstance() which run fine

DBServerImpl should have an config file parameter that denotes the database, an could be
used to get the appropriate instance (much like getDriver())

added config file parameter named DBMS_NAME

added variable databaseFormat which substitutes static call to DatabaseFormat, and which
is set by using DatabaseFormat.getInstance(DBMS_NAME)

tests still run perfectly

as the current DatabaseFormat covers the syntax and specialities of the Progress DBMS; its
functionality should be partially moved to a subclass named ProgressFormat

Using the Extract Subclass refactoring to create the appropriate subclass moving the neces-
sary parts of the methods to the subclass

started with formatObject() which does special formating for the Boolean and Date values
in ProgressFormat

tests run

next in row is createUpdateStatement() whose results’ syntax differs to much in Progress
and Oracle

the constant DELETE is also moved to ProgressFormat, because it covers a different syntax
as well

all tests stills run

I think all of the methods moved to ProgressFormat should cover the differences to Database-
Format

now another subclass named OracleFormat can easily be created, (it is instantiated auto-
matically by calling DatabaseFormat.getInstance(” Oracle”)), the same methods have to be
moved there but containing other code

the OracleFormat should be tested as well but unfortunately I don’t have access to an Oracle
System right now, a new test class must be created as well, as the assertions in the current test
class clash with the syntax produced by OracleFormat, ideally this would be accomplished
by subclassing DBServerImplTest to DBServerImplTestOracle

DBServerImpl should be overwritten on a per project basis, it has to be reexamined which
parts are still project and (hopefully none) database dependent

56 APPENDIX A. REFACTORING EXAMPLE

A.2 Refactoring Switch Statement

createWhere() {

// within an iteration over all attributes of the Kriterium object
switch(krit.getOperatorId(i)){
case Kriterium.NONE:
break;
case Kriterium.LIKE:
where = (where.equals("")7(" (" + spalteName):(where + " and (" + spalteName));
if (obj==null)
where = where + " IS " + objOra7String+ ") ";
else
where = where + " 1like ’\J)" +
objOra7String.substring(1l, objOra7String.length()-1) + "\%’)";
break;

// this is repeated 8 times to form the complete switch statement
A;Q the code looks like:

createWhere() {

}}.within an iteration over all attributes of the Kriterium object

operator=krit.getOperatorId(i);
if (operator == Kriterium.NONE) continue;

spalteName = createQualifiedName(dd.getDB(i,false),
dd.getDBTable(i, false), dd.getAttributeName(i));

obj = krit.getAttribute(i);
where=andExpressions(where,
getExpression(spalteName,operator, obj));

with located in DatabaseFormat:

public String getExpression(String field, int operator, Object obj) {
return field + " " + getExpression(operator,obj);
}
public String getExpression(int operator, Object obj) {
if (obj==null)
return formatWhereNull (operator) ;

switch(operator){
case Kriterium.LIKE:
return formatLike(obj);
case Kriterium.BEGIN:
return formatBegin(obj);
default:
return getOperatorLabel (operator) + " "+
formatObject (obj) ;

A.3. REPLACE PARAMETER WITH QUERY o7

A.3 Replace Parameter with Query

public synchronized Datal[] query(Kriterium krit) throws RemoteException{
boolean[] isPartOfQuery=new boolean[krit.getAttributesCount()];

String select=createSelect (krit, isPart0fQuery);

}
// the following method was extracted from query()
protected String createSelect(Kriterium krit, boolean[] isPartOfQuery) {
String select = "";
Debug.dbg ("DBServerImpl.query("+krit.getName()+")");
DataDescriptor dd=krit.getDescriptor();
Vector selectVector=new Vector();
Vector fromTableVector=new Vector();
Constraint c=null;

for(int i=0;i<dd.getTables().length;i++)
fromTableVector.addElement (dd.getTables() [i]);

for (int i= 0; i < krit.getAttributesCount(); i++) {
isPart0fQuery[i]=false;
c=dd.getConstraint (i) ;
if (c.getTable() == null) continue;

if (c.getType() == DataDescriptor.REF || c.getType() == DataDescriptor.BACKREF) {
if(dd.getDBTable(i, true) !=null && dd.getDBTable(i, false) !=null){
// nur Tabellen nehmen, deren Spalten selektiert werden

if (fromTableVector.index0f (dd.getDBTable(i, true)) != -1 &&
fromTableVector.index0f (dd.getDBTable(i, false)) != -1){
selectVector.addElement (dd.getDBTable(i, false) + "." +
dd.getAttributeName(i));
select+=((select.length()>0)?", ":" ")+dd.getDBTable(i, false) +

"." + dd.getAttributeName(i);
isPart0fQuery[il=true;

}
}
} else {
selectVector.addElement (dd.getDBTable(i, false) + "." + dd.getAttributeName(i));
select+=((select.length()>0)?", ":" ")+dd.getDBTable(i, false) +

"." + dd.getAttributeName (i) ;
isPart0fQuery[i]=true;
}
}
return select;

}

// this heavyweight was refactored by using only ReplaceParameterWithMethod(292)
// this is a lightweight that was later moved to DatabaseFormat which
// deals only with the names of fields

protected String createSelect(Kriterium krit) {
boolean[] isPartOfQuery=isPart0fQuery(krit);
StringBuffer select = null;

58

}

APPENDIX A. REFACTORING EXAMPLE

Debug.dbg ("DBServerImpl.query("+krit.getName () +")");
DataDescriptor dd=krit.getDescriptor();
String qualifiedName;

for (int i= 0; i < krit.getAttributesCount(); i++) {

if (isPartOfQuery[i]) {

qualifiedName=
databaseFormat.createQualifiedName (
null,dd.getDBTable(i, false), dd.getAttributeName(i));
select=databaseFormat.concatExpressions(select,",",qualifiedName) ;

}

}

return databaseFormat.notNullString(select);

// this is also a lightweight that was later moved to DatabaseFormat

// it

doesn’t care about creating a select string but rather marks the fields

// necessary for the select

protected boolean[] isPartOfQuery(Kriterium krit) {

¥

boolean[] isPartOfQuery=new boolean[krit.getAttributesCount()];
DataDescriptor dd=krit.getDescriptor();

Vector fromTableVector=new Vector();

String table, reftable;

Constraint c=null;

for(int i=0;i<dd.getTables().length;i++)
fromTableVector.addElement (dd.getTables() [i]);

for (int i= 0; i < krit.getAttributesCount(); i++) {
isPart0fQuery[i]=false;
c=dd.getConstraint (i) ;
if (c.getTable() == null) continue;

table=dd.getDBTable(i, false);
reftable=dd.getDBTable(i, true);

if (c.getType() == DataDescriptor.REF
|| c.getType() == DataDescriptor.BACKREF) {

// nur korrekte Referenzen nutzen
if(reftable !=null && table !=null){

// nur Tabellen nehmen, deren Spalten selektiert werden
if (fromTableVector.index0f (reftable) !'= -1 &&
fromTableVector. index0f (table) !'= -1){

isPart0fQuery[i]=true;
}
}

} else isPartO0fQuery[i]=true;

}

return isPart0fQuery;

A.4. THE TWO SUBCLASSES OF DATABASEFORMAT 59

A.4 The Two Subclasses of DatabaseFormat

// PROGRESS
package emw.metaworks.server;

import emw.metaworks.model.*;
import emw.metaworks.util.*;
import java.util.Date;
import java.util.Hashtable;
public class ProgressFormat extends DatabaseFormat {
protected static UTCDateFormat dateFormat = new UTCDateFormat("MM/dd/yyyy");
protected static String DELETE = "delete from";
public String formatObject(Object obj) {
if (obj instanceof Boolean) return (((Boolean)obj).booleanValue())?"yes":"no";
if (obj instanceof java.util.Date || obj instanceof java.sql.Date) {
return "date(’"+dateFormat.format(obj)+"’)";
}
return super.formatObject(obj);
public String createUpdateStatement(Data data, Object user_oid) {
DataDescriptor dd = data.getDescriptor();
String mainTable = dd.getDBTable(dd.get0idId(), false);
String qualifiedName=createQualifiedName(dd.getDB() ,mainTable,null);
StringBuffer set=null, where = null;

for (int j = 0 ; j < data.getAttributesCount(); j++){

String attributTableName = dd.getDBTable(j, false);

if (!'mainTable.equals(attributTableName) || !data.wasChanged(j)){
continue;

}

set=concatExpressions(set,",",

getExpression(dd.getAttributeName (j),
Kriterium.EQ,
data.getAttribute(j)));

where = create0idExpression(data.get0ids(), dd);
if (data.getLastModify() !=null) {

set=concatExpressions(set,",",
getExpression("geaendert_von",
Kriterium.EQ,
user_oid));

60 APPENDIX A. REFACTORING EXAMPLE

set=concatExpressions(set,",",
getExpression("geaendert_datum",
Kriterium.EQ,
new java.sql.Date(System.currentTimeMillis())));

where=andExpressions(where,
getExpression("geaendert_datum",
Kriterium.LE,
new java.sql.Date(data.getLastModify().getTime())));

}
return UPDATE + " " + qualifiedName A T TR
SET + " " + notNullString(set) + " " +
WHERE + " " + notNullString(where);
}
}
// ORACLE

package emw.metaworks.server;

import emw.metaworks.model.x*;
import emw.metaworks.util.*;
import java.util.Date;

import java.util.Hashtable;

public class OracleFormat extends DatabaseFormat {
protected static UTCDateFormat dateFormat = new UTCDateFormat("yyyy-MM-dd HH:mm:ss");
protected static String DELETE = "delete";

public String formatObject(Object obj) {
if (obj instanceof java.util.Date) {
return "to_date(’" + dateFormat.format(obj) +
"> 2YYYY-MM-DD HH24:MI:SS’)";
}
if (obj instanceof Boolean) return (((Boolean)obj).booleanValue())?"1":"0";
return super.formatObject(obj);

public String createUpdateStatement(Data data, Object user_oid) {
DataDescriptor dd = data.getDescriptor();
String mainTable = dd.getDBTable(dd.get0idId(), false);
String qualifiedName=createQualifiedName(dd.getDB() ,mainTable,null);

StringBuffer set=null, where = null, values=null;
for (int j = 0 ; j < data.getAttributesCount(); j++){

String attributTableName = dd.getDBTable(j, false);

A.4. THE TWO SUBCLASSES OF DATABASEFORMAT 61

if (!mainTable.equals(attributTableName) || !data.wasChanged(j)){
continue;

}

set=concatExpressions(set,",", dd.getAttributeName(j));

values=concatExpressions(values,",", formatObject(data.getAttribute(j)));

where = create0idExpression(data.getOids(), dd);
if (data.getLastModify() !=null) {

set=concatExpressions(set,",","geaendert_von");
values=concatExpressions(values,",",formatObject (user_oid));

set=concatExpressions(set,",","geaendert_datum");
values=concatExpressions(values,",",formatObject(
new java.sql.Date(System.currentTimeMillis())));

where=andExpressions (where,
getExpression("geaendert_datum",
Kriterium.LE,
new java.sql.Date(data.getLastModify() .getTime())));

}

return UPDATE + " " + qualifiedName + " "+
SET + " (" + notNullString(set) + ") = " +
" (select " + notNullString(values) + " from dual) " +
WHERE + " " + notNullString(where);

62 APPENDIX A. REFACTORING EXAMPLE

A.5 Comparison of the Code before and after the refactor-
ing

To visualize the result of the refactoring of the database server class, I listed the code of the single
class before the refactoring and the code of the 4 resulting classes after the refactoring.

Besides reducing the general number of lines, the resulting code looks much lighter as there are
no more large blocks of code clumped together in a single method but rather small methods which
either call other methods to delegate the work to do or containing only a few lines of computing
code.

Figure A.1: Comparison of the Code before and after the refactoring

Bibliography

[Fowler] Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Co., Inc, Reading, MA, 3rd printing Nov 1999.

The first comprehensive book about refactoring, most of this work depends on
it. See also the online resources at http://www.refactoring.com, where also an
extended online catalog of the refactorings mentioned in the book is found.

[Beck,Xp] Beck, Kent. eXtreme Programming eXplained: Embrace Change. Addison-Wesley Co.,
Inc, Reading, MA, 2nd printing Nov 1999.

Kent Beck shows convincingly how simple programming principle combined make
up a great programming process.

[Gang of Four] Gamma, Erich., Helm, R., Johnson, Ralph, Vlissides John. Design Patterns: Ele-
ments of Reusable Object Oriented Software. Addison-Wesley Co., Inc, Reading, MA, 1999.

This is the book where four people gave the expert knowledge possessed by every
programmer a shape - Patterns. It was the first step in a very exciting development.

[UML+Patterns, Larman] Larman, Craig Applying UML and Patterns

This book concentrates on the introduction of an iterative, incremental develop-
ment process which is based on UML techniques and notations for documenting
its results and on Patterns for formalizing the steps from analysis to design.

[Opdyke, Thesis] Opdyke, William F. Refactoring Object-Oriented Frameworks Ph.D. diss., Uni-
versity of Illinois at Urbana-Champaign, 1992.

The first decent-length writing on refactoring [Fowler]. Get it at:
ftp:/ /st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z.

[Gamma, JUnit] Gamma, Erich Beck, Kent. JUnit Open Source Testing Framework.

See http://members.pingnet.ch/gamma/junit.htm for an easy introduction to unit
testing by the authors of the testing framework JUnit.

[Refactoring Browser] Brant, John Roberts, Don. Refactoring Browser Tool.

Unfortunately to this time only available for the Smalltalk Programming language
at http://chip.cs.uiuc.edu/users/brant/Refactory/.

[Wake, JUnit] Wake, William. A XP session.

On http://users.vnet.net/wwake/xp/xp0001/index.shtml William Wake walks
through a sample session of using unit tests to test an implement an simple User
Interface.

[Wiki] The Wiki Pages about Refactoring

See http://c2.com/ppr/wiki/WikiPagesAboutRefactoring, for lots of material in
form of jointly edited web pages to which many experts of the area contributed.

63

64 BIBLIOGRAPHY

[TAPOS] Don Roberts, John Brant, and Ralph Johnson. The Theory and Practice of Object
Systems: Supporting Software Evolution with Automated Refactorings: A Refactoring Tool
for Smalltalk University of Illinois at Urbana-Champaign, Department of Computer Science,
1997.

http://st-www.cs.uiuc.edu/ droberts/tapos/ TAPOS.htm
[JRefactory] JRefactory by Chris Seguin.

A tool licensed under the GPL which allows applying refac-
torings using a generated UML-diagram interface. Available at:
http://users.snip.net/ aseguin/chrisdown.html.

[JBuilder IDE] Borlands Java Development Environment JBuilder
Look at http://www.borland.com.
[Elixir IDE] The Java IDE Elixir

A very powerful environment written in Java for developing Java ap-
plications. It includes features like version control, template driven -class
generation, auto expansion, incremental obfuscation etc. Available at:
http://www.elixirtech.com /ElixirIDE/

[Renamer] The Renamer tool from IntellJ Software.

The Renamer can be downloaded from http://www.intellij.com. It is mainly useful
for finding occurrences of and references to symbols within Java source files and
for performing operations such as renaming on them.

[Xref-Speller] The Xref-Speller a Plug-In for Emacs by Marian Vittek.

The Xref-Speller is actually a front end for the xref program, which allows it to
perform operations on the symbols of Java programs with the use of an extracted
parse tree. A trial version can be found at: http://www.xref-tech.com.

[JDK] The Java Development Kit (actually 1.3) by Sun Microsystems.

Much information about the JDK as well as current releases are available at Sun’s
web site http://www.javasoft.com.

[Nygard] Michael T. Nygard Tracie Karsjens, Test infect your Enterprise JavaBeans JavaWorld,
May 2000.

The article features a very convincing introduction to unit testing and
covers the extension of the JUnit [Gamma, JUnit] for testing Java En-
terprise Beans in the application server environment. Can be found at:
http://www.javaworld.com/javaworld /jw-05-2000/jw-0526-testinfect.html.

[Refactoring, Hunger] Michael Hunger, Thesis:Refactoring - Benefits and Disadvantages of an
Amazing Technique, Dresden, Oct 2000

All documents related to this paper can be found at http://emw.inf.tu-
dresden.de/ mh14/refactoring.

